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repeating tasks. However, small variations in the performed task may lead to a large performance
deterioration. The aim of this paper is to develop a novel ILC approach, by exploiting rational basis
functions, that enables performance enhancement through iterative learning while providing flexibility
with respect to task variations. The proposed approach involves an iterative optimization procedure

after each task, that exploits recent developments in instrumental variable-based system identification.
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simulation examples.

Enhanced performance compared to pre-existing results is proven theoretically and illustrated through

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

ILC enables a significant performance enhancement of batch-
repetitive processes. In ILC the command signal is iteratively
updated from one experiment (trial) to the next. Typical ILC
algorithms generate a control signal that exactly compensates for
the trial-invariant exogenous disturbances during a specific task.
ILC has been thoroughly researched, including convergence analy-
sis (Moore, 1993; Norrlof & Gunnarsson, 2002), and robustness to
model uncertainty (Ahn, Moore, & Chen, 2007; Bristow & Alleyne,
2008) and disturbances (Ghosh & Paden, 2002; Saab, 2005). In ad-
dition, many successful applications have been reported, includ-
ing wafer scanners (de Roover & Bosgra, 2000; Mishra, Coaplen,
& Tomizuka, 2007) and printing systems (Bolder, Oomen, Koeke-
bakker, & Steinbuch, 2014).

ILC can perfectly compensate for non-varying disturbances, but
is consequently very sensitive to varying disturbances. These vary-
ing disturbances include measurement noise and also changing
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reference trajectories. As a result, a learned signal corresponds
to a specific reference signal and a change in this signal poten-
tially leads to performance deterioration (Gao & Mishra, 2014;
Heertjes & van de Molengraft, 2009; Hoelzle, Alleyne, & Wagoner
Johnson, 2011; Phan & Frueh, 1996). To overcome this drawback,
several solutions to enhance the extrapolation properties of ILC
have been developed. In Hoelzle et al. (2011), the extrapolation
properties are enhanced by constructing the task such that it con-
sists of a set of basis tasks. This provides extrapolation to tasks
consisting of a finite set of elementary tasks. A more general ap-
proach is to parameterize the command signal in a set of basis func-
tions (Oh, Phan, & Longman, 1997; Phan & Frueh, 1996). Such an
approach allows for arbitrary tasks. Examples include polynomial
basis functions (Bolder et al., 2014; Gao & Mishra, 2014; Heert-
jes & van de Molengraft, 2009; van de Wijdeven & Bosgra, 2010)
for which the associated optimization problem has an explicit an-
alytic solution (Gunnarsson & Norrléf, 2001). These polynomial ap-
proaches have clear advantages from an optimization perspective,
since global optimality can be guaranteed and the implementation
and computation is generally inexpensive and fast.

Recently, rational basis functions have been introduced in ILC
in Bolder and Oomen (2015). These rational basis functions are
more general than polynomial basis functions since the latter are
recovered as a special case. In the rational case, an analytic solution
can be retained if the poles are pre-specified (Heuberger, Van den
Hof, & Wahlberg, 2005). To enable enhanced performance the poles
are also optimized in Bolder and Oomen (2015), where the non-
convex optimization problem is solved using a similar algorithm
as in Steiglitz and McBride (1965). In Bolder and Oomen (2015),
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fast convergence to a stationary point and increased performance
is reported. In addition, the algorithm is reported to be less
sensitive to local minima when compared to a Gauss-Newton
type of algorithm as shown in, for example, (Bohn & Unbehauen,
1998). However, in the present paper both a theoretical and
numerical analysis are presented that reveal that the stationary
point of the iteration is not necessarily a minimum of the objective
function, which in fact has also been observed in related system
identification algorithms (Whitfield, 1987).

Although important contributions have been made to enhance
extrapolation capabilities of ILC through basis functions, presently
available optimization algorithms suffer from the problem of
non-optimality or poor convergence properties. The aim of this
paper is to develop a new approach that guarantees that the
stationary point of the iterative solution is always an optimum.
As a consequence, increased performance is achieved compared
to pre-existing approaches. The proposed approach is related
to instrumental variable system identification. Note that the
instrumental variable approach in Boeren, Oomen, and Steinbuch
(2015) is essentially different in that it deals with an estimation
problem and not an ILC problem.

The contributions of this paper are threefold. First, a new
iterative solution algorithm for rational basis functions in ILC
is proposed which constitutes the main contribution of this
paper. Second, non-optimality of the pre-existing approach for
rational basis functions in ILC is established. Third, it is shown
by two simulation examples that (i) the proposed approach
outperforms the pre-existing approach, and (ii) ILC with basis
functions outperforms standard ILC for varying reference tasks.
Since the proposed approach has close connections to instrumental
variable-based system identification, the simulation study may be
of interest to instrumental variable based system identification.

In Bolder and Oomen (2015) a different iterative solution for
rational basis functions in ILC is provided. In this paper it is
theoretically proven and illustrated through simulation examples
that this pre-existing approach is non-optimal by construction
and is outperformed by the proposed approach. Related to the
present paper, preliminary results can be found in van Zundert,
Bolder, and Oomen (2015). This paper significantly extends this
earlier research on several aspects. First of all, a more general basis
parameterization is considered. Second, a proof for the optimal
proposed approach is presented. Third, solutions of ILC with
polynomial basis functions and standard norm-optimal ILC are
recovered as special cases. Fourth, the non-optimality of the pre-
existing approach is mathematically proven, motivating the use
of the novel approach. Fifth, a numerical simulation example on
convergence is presented to provide insight into both approaches.
Finally, a simulation example is presented demonstrating the
enhanced extrapolation properties with respect to norm-optimal
ILC and ILC with polynomial basis functions.

The outline of this paper is as follows. In Section 2, the problem
considered in this paper is introduced. The proposed approach
is presented in Section 3. In Section 4, the proposed approach
is compared with the pre-existing approach (Bolder & Oomen,
2015). Moreover, non-optimality of the pre-existing approach is
established. The two iterative approaches are compared by use of a
simulation example in Section 5, demonstrating that the proposed
approach outperforms the pre-existing approach on a complex
industrial system. In Section 6, a simulation example is presented
revealing the benefit of using basis functions in ILC. Section 7
contains conclusions.

Notation In this paper, systems are discrete-time, linear, time-
invariant (LTI), single-input, single-output (SISO). Systems are
generally rational in complex indeterminate z and indicated in
boldface with the argument z, for example H(z). Let x(k) denote
a signal x at time k. Let h(l) be the impulse response of the system

Fig. 1. Block diagram of closed-loop system under consideration.

H(z). The output y(k) of the response of H(z) to input u is given by
y(k) = Zf:o_oo h(hu(k — I). Let N € Z* denote the trial length,
i.e. the number of samples per trial. Assuming u(k) = 0 fork < 0
and k > N — 1, then the input-output relation can be recast as

y[o] h(0) h(=1) h(1—N) u[0]
yl1] h(1) h(0) h(2 —N) u[1]
YIN — 1] hN—1) h(N-2) ...  hO) ulN — 1]
y H u

with u,y € RV the input and output, respectively. Let ||x||y :=
x"Wx,wherex € RN and W = W' e RVN. W is positive definite
(W > 0)iffx"Wx > 0, Vx # 0 and positive semi-definite (W > 0)
iff xTWx > 0, Vx.

To facilitate presentation, occasionally transfer functions are
assumed causal to enable a direct relation between infinite and
finite time. This is standard in ILC (Norrléf & Gunnarsson, 2002)
and not a restriction on the presented results. For instance, the
approach in Boeren et al. (2015, Appendix A) may be adopted.

2. Problem formulation

In this section the considered problem is defined by describ-
ing the system, introducing norm-optimal ILC, and highlighting
the limitations of standard norm-optimal ILC. Finally, the contri-
butions are listed explicitly.

2.1. System description

The control setup is shown in Fig. 1. Here P = f;—g, By, Ay €

R[z], is the rational system and C an internally stabilizing feedback
controller. The closed-loop system is assumed to operate batch-
repetitive, i.e. the same process of fixed length N is repeated over
and over. A single execution is referred to as a trial. The aim is to
determine the feedforward f; for trial j 4+ 1 such that the output
Yj+1 follows the trial-invariant reference r, i.e. minimizes the error

€1 =T —Yjt1.
The error for trial j is given by

ej = Sr — SPf; (1)

with sensitivity S := (I + PC)~!, process sensitivity ] := SP, and
i := Sr. The error for trial j + 1 is given by

e]'+] = F __]f}‘_'.l. (3)

Eliminating 7 from (3) by using (2) yields the trial-to-trial
dynamics

eis1 =€ +J (f —fir1) . (4)

which are optimized in norm-optimal ILC.

2.2. Norm-optimal ILC

Norm-optimal ILC is an important class of ILC in which
the feedforward signal fi;; for the next trial is determined by
minimizing a performance criterion as in Definition 1.
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