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In order to cope with classification problems involving large datasets, we propose a new mathematical 
programming algorithm by extending the clustering based polyhedral conic functions approach. Despite 
the high classification efficiency of polyhedral conic functions, the realization previously required a nested 
implementation of k-means and conic function generation, which has a computational load related to 
the number of data points. In the proposed algorithm, an efficient data reduction method is employed 
to the k-means phase prior to the conic function generation step. The new method not only improves 
the computational efficiency of the successful conic function classifier, but also helps avoiding model 
over-fitting by giving fewer (but more representative) conic functions.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The ever-increasing internet bandwidth together with mass 
storage has long required mining, clustering and classification [1], 
for applications ranging from finger print or iris recognition based 
security technologies to detecting spam e-mails, to gesture or 
face recognition. These technologies improve innovative aspects of 
commercial products or improve the convenience of the provided 
service. Consequently, researchers have been interested in classi-
fication problems for years. The early research on classification 
focused mostly on feature extraction and classifier optimization 
by means of finding best separating functions/surfaces. Unfortu-
nately, the ever-increasing data amount enforced researchers to 
adopt different strategies to handle the new problem of big data. 
According to a not-so-new IDC Digital Universe Study [2] collected 
data doubles in every two years. Nowadays, it is argued that the 
doubling period is also shrinking. Because of this, developed algo-
rithms must be appropriate to work with large datasets for both 
in training step (classifier construction) and test step (application). 
Any improvement to reduce computation times by multiple-folds 
would be welcome.

Naturally, a necessary property of classification algorithms is its 
classification accuracy. In that aspect, the developed algorithms are 
expected to perform well with respect to standard classifiers such 
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as Bayesian classifiers [3], artificial neural networks [4], decision 
trees [5,6], and support vector machines [7].

Starting from 1960’s there has been an interest to classification 
algorithms based on mathematical programming. A literature ex-
ample is by Bennett and Mangasarian, where a robust approach 
for linear separation was developed [8]. In another work, Astorino 
and Gaudioso used more than one hyper planes to separate two 
sets; which were found with mathematical programming [9]. Max–
Min separation is another related successful approach developed 
by Bagirov [10]. Similarly, Uney and Turkay developed an Inte-
ger Programming algorithm to classify more than one classes with 
hyper boxes [11]. One of the most famous and commonly used 
classification algorithms is Support Vector Machines (SVMs), which 
is based on quadratic programming methods [7]. A survey based 
on SVMs and its latest improvements can be found in [12]. In [13]
non-smoothness in classification, in [14] non-linear programming 
in classification, in [15] margin maximization based on polyhe-
dral separability, and in [16] ellipsoidal separation for classification 
problems were investigated. Finally, classification with truncated l1
distance kernel was introduced in [17]. This presented work is also 
considered within the class of classification algorithms that use LP.

A critical idea that is utilized in this paper is to construct and 
use Polyhedral Conic Functions (PCFs), which were first proposed 
for classification by Gasimov and Ozturk [18] and the classifica-
tion method was also named PCF algorithm [1]. The authors then 
combined the PCF approach with Bagirov’s Max–Min separation al-
gorithm [19]. Later, clustering based PCF algorithm [20] was devel-
oped and successfully applied to real life problems such as arrhyth-
mia classification [21] and gesture recognition [22]. An incremental 
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piecewise linear classification algorithm based on polyhedral conic 
separation was also introduced in [23].

In this work, the highly accurate clustering based PCF [20] is 
considered as a starting point, and the part of the creation of 
the LP problem, to construct the classifier, is smartly modified to 
improve the computational efficiency, which is expected to en-
able processing large datasets. The clustering based PCF is a novel 
method which outperforms several state-of-the-art classifiers, in-
cluding SVM [20]. However, in its original version, a linear con-
straint was existing in the LP model for each additional data point. 
Consequently, when data size is very large, the model had too 
many constraints to be handled. In this work, we eliminate unnec-
essary data points (hence constraints) after the clustering stage. 
The new strategy is observed to keep the high accuracy of PCFs 
on datasets from UCI Machine Learning Repository while reduc-
ing computation times and avoiding over-fitting with fewer conic 
functions.

Before we introduce the ICF algorithm, we will clarify the no-
tation. The 2-d matrices, which are the sets in this paper, like A
are symbolized by capital boldface letters. Vectors are represented 
by boldface lower case letters and scalars are represented by italic 
lower case letters.

The rest of the paper is organized as follows. In Section 2, the 
proposed algorithm is explained with algorithmic layouts and ex-
ample illustrations. In Section 3, experimental results are given. 
Finally, conclusions are provided. The implemented software of the 
work is also provided in the accompanying SoftwareX part of this 
Special Issue [24].

2. Incremental conic functions (ICF) algorithm

2.1. Preliminaries

In this subsection, we briefly describe the notions of PCFs 
and polyhedral conic separation. More detailed description can be 
found in [18].

Let A and B be given disjoint sets in Rn containing m and p
points, respectively:

A = {
a1, . . . ,am}

, ai ∈ Rn, i = 1, . . . ,m, (1)

B = {
b1, . . . ,bp}

, b j ∈ Rn, j = 1, . . . , p. (2)

PCFs construct a separation function for the sets A and B as 
following.

Definition ([18]). A function g : Rn → R is called conic function if 
its graph is a cone and all its level sets satisfy:

S(α) = {
x ∈ Rn : g(x) ≤ α

}
, (3)

for α ∈ R , yielding, so called, convex sets.

Given w, c ∈ Rn , ξ, γ ∈ R , the general form of conic function 
g(w,ξ,γ ,c): Rn → R is defined as follows:

g(w,ξ,γ ,c)(x) = w(x − c) + ξ‖x − c‖p − γ , (4)

where ‖x‖p is an lp -norm of the vector x ∈ Rn and g(x) defines a 
conic function that can be used for constructing discriminating re-
gions of two arbitrary sets: A and B. Here, it must be noted that 
x is a point in the set and c is the Euclidian center (or selected 
from Rn in some approaches) (i.e., not the lp center) of the set, 
that was already calculated before the solution of the LP. This cen-
ter also corresponds to the lowest (vertex) point of the cone. The 
degree (p) of lp norm can be varied to obtain a rich class of convex 

Fig. 1. Level sets of conic function for p = 1, 2, 4, 10 and 50, and wT = [1, 1], cT =
[0, 0], γ = 2.

sets, ranging from 1 to ∞. In Fig. 1, level sets (horizontal intersec-
tion with the plane z = 0) of various cones are illustrated for p = 1, 
2, 4, 10 and 50 and wT = [1, 1], cT = [0, 0], γ = 2.

Throughout this work, l1-norm is used to define a particular 
conic shape, which is the “polyhedral conic shape”:

g(w,ξ,γ ,c)(x) = w(x − c) + ξ‖x − c‖1 − γ . (5)

Using multiple different polyhedral conic functions, it be-
comes possible to separate and classify arbitrarily distributed (non-
convex) sets A and B. PCF algorithms [18], k-means based PCF 
algorithm [20] and incremental PCF algorithm [23] have differ-
ent center selection and updating strategies. In [18], the center 
points are randomly selected from the set A and classification was 
achieved by sequentially eliminating correctly classified points. In 
[20], the centers of PCFs are found by solving k-means algorithm 
and then a PCF is obtained by solving LP for each cluster. In [18]
and [20] an eventual classifier is constructed as point-wise min-
imum of all PCFs, requiring several PCF constructions. In [23], 
classifier is obtained by minimizing a single error function in an 
incremental manner.

2.2. Review of k-means based polyhedral conic functions (PCFs)

In the k-means based Polyhedral Conic Function approach [20], 
the classifiers are constructed with the simultaneous use of the 
polyhedral conic separation approach [18] and the k-means clus-
tering technique. This algorithm applies k-means algorithm to find 
centers of PCFs. In order to construct the classifier for a specific 
class, the class is first divided into sub-clusters via k-means algo-
rithm. Then, an LP is solved for each cluster in order to obtain a 
PCF that separates the cluster from the other classes. Thus, k PCFs 
are obtained after this operation. The classifier of the selected class 
is obtained as a point-wise minimum of k separate PCFs. These 
steps are repeated for each class. If the number of classes is η, 
the total number of constructed PCFs is η × k. In the test phase, 
a data point is applied to each of these η × k PCFs, and the class 
ηi is chosen for the PCF function which yields the minimum func-
tion value. In the original form of the polyhedral conic separation 
method [18], the number of PCFs to be tested was huge as com-
pared to the limited (η × k) number of PCFs. Therefore, the use 
of clustering algorithm allows to significantly decrease the number 
of centers and consequently the number of PCFs which makes the 
algorithm reasonable for real life applications and helps to avoid 
over-fitting problem.
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