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This paper presents a comparison of currently available methods for non-parametric and bias-free 
estimation of the autocorrelation function and power spectral density from randomly sampled data. The 
primary motivation is the processing of velocity data obtained using laser Doppler techniques in turbulent 
flows. However, the methods are applicable to various other cases of random sampling, including those 
with small deviations from the ideal Poisson process. Whilst these methods have been compared in 
the literature before, a fair comparison of their relative performance requires that they be tested under 
identical conditions. This includes identical use of special processing options and identical processing 
parameters. This has not been achieved in the literature to date. An example application on publicly 
available laser Doppler data shows agreement between the results obtained with the different methods. 
Under this fair comparison, the methods converge in terms of their systematic and random errors, 
indicating that they are comparably efficient at using the available information content of the randomly 
sampled signal. The results also identify that the available methods are interchangeable and indicate a 
possible replacement for the current best-practice procedure in the laser Doppler community.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Discrete sampling of continuous signals usually reduces the in-
formation available. However, there is no alternative if one wants 
a numerical representation of the original signal suitable for sta-
tistical analysis through computer programs. Uniform sampling is 
usually the preferred means of achieving this goal. It has the ad-
vantage of enabling the application of well-established methods 
for statistical analysis with the temporal resolution defined by the 
chosen sampling frequency. This kind of sampling has been com-
prehensively investigated and is reflected in the Shannon–Nyquist 
theorem [1]. For non-uniformly sampled signals, high-resolution 
information is preserved since some samples are taken in pairs 
with short separations. These pairs of samples are taken sporad-
ically. The average sampling rate can be smaller. The overall in-
formation of the signal is reduced, similar to uniform sampling, 
but there is no specific cut-off frequency or resolution limit. On 
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the other hand, for a given average sampling rate, short sampling 
distances must be balanced by longer sampling distances. For the 
same average data rate, nonuniform sampling yields a less effec-
tive representation of the information in comparison to uniform 
sampling, requiring longer data sets to obtain a given statistical 
confidence. Furthermore, the processing routines must account for 
the irregular sampling times, making them computationally expen-
sive.

Laser Doppler velocimetry (LDV) [2–4] is a good example, of a 
measurement process with nonuniform sampling. The fluid flow 
under investigation is sampled by randomly distributed tracer par-
ticles carried along by the flow. Particles crossing the measurement 
volume of the system lead to individual estimates of the arrival 
time and the velocity. Additionally, the system evaluates the transit 
time (also called the residence time) which is the time the particle 
needs to cross the measurement volume.

An ideal Poisson process would result in an exponential distri-
bution of inter-arrival times of consecutive samples. Unfortunately, 
LDV introduces deviations from this ideal random sampling. Par-
ticles with very short separations may lead to interfering signals. 
To avoid subsequent errors, such signals are identified and rejected 
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by the measurement system. Therefore, the data set has a certain 
minimum distance between consecutive particle arrivals. The cor-
responding minimum interval plus other temporal delays of the 
measurement system is known as the processor dead time. These 
delays set the effective limit of the temporal resolution achievable 
by the measurement system. Typically, this limit is much higher 
than the mean data rate in practical applications. However, it in-
fluences the distribution of sampling intervals and it affects the 
statistical characteristics of the sampled velocity signal.

The sampling rate increases with increasing velocity since more 
particles pass through the measurement volume at higher volume 
flux. This introduces a bias to all statistical quantities derived from 
the obtained data ensemble [5,6]. One way to tackle this issue is 
to apply weighting factors to the individual samples. The weight-
ing factors should take into account the varying probability density 
of measurement events. Common weighting methods are discussed 
in Section 2.1. During the passage through the measurement vol-
ume each particle generates a Doppler signal. The extraction of 
a velocity value from this Doppler signal comes with a certain 
estimation uncertainty. This random error produces an additional 
white noise superimposed upon the velocity samples, making ap-
propriate treatment of systematic errors necessary, which occur in 
statistical functions derived from these data.

The statistical analysis of LDV data requires procedures, which 
are suitable under these conditions. Various successful processing 
methods have been developed in the past, including demonstra-
tion of specific test cases where one particular method is superior 
to others. However, comparisons between the processing meth-
ods are confounded by different boundary conditions, processing 
parameters and optional processing steps. So far, differences be-
tween the processing principles themselves have not been discov-
ered uniquely. To do so, variations in respective processing steps 
need homogenization. Important are for instance the application 
of a common weighting scheme, the treatment of self-products, 
normalization attempts and a common method to transform the 
correlation estimate into a corresponding spectrum including an 
effective reduction of the spectral resolution with most efficient 
use of information available. The result is that some of the es-
tablished autocorrelation and spectral estimators yield equivalent 
estimates, where the values of the functions differ between the 
methods for a particular data set, but the estimates have similar 
statistical properties in terms of systematic errors and estimator 
variance. This indicates that these methods are comparably effi-
cient at using the information of the signal. Further, this gives 
evidence that the various processing methods are interchangeable 
and that the preference of one particular method will not affect 
the statistical characteristics of the results.

The available methods to obtain estimates of the autocorre-
lation function and the power spectral density from irregularly 
sampled data are reviewed in the following sections. However, 
to achieve the inter-comparability, processing options are shared 
between the various processing methods. Where required, modi-
fications from the original literature will be introduced in detail. 
For all procedures used here Python source code is online avail-
able at [7]. Note that the given estimators of the autocorrelation 
function and the power spectral density are useful for nonuniform 
observations of stationary processes only.

The present article consequently follows the goal of non-
parametric and bias-free estimates. Complete bias correction may 
potentially lead to correlation matrices, which violate the non-
negative definiteness. As a consequence, negative values may occur 
in the corresponding power spectral density. Since the introduced 
procedures yield bias-free and consistent estimates of both, the 
correlation function as well as the spectrum (except for averaging 
over the fundamental time intervals �τ ), averages over multiple 
estimates of the functions or estimates from longer data records 

will converge towards the correct functions of the underlying pro-
cess. The ultimate solution is regularization. A broad overview of 
present approaches is given in [8]. Since this inevitably introduces 
a bias to both the correlation function and the corresponding spec-
trum, regularization is unusual in LDV data processing. It is not 
investigated here, where bias-free estimation has priority. How-
ever, it can be added on demand as an intermediate processing 
step prior to the final transformation into the spectrum or as a 
post-processing step past the procedures introduced here.

2. Processing methods

The velocity u(t) as a function of time is assumed to be sam-
pled irregularly at instances ti , yielding a data set of N samples 
ui = u(ti) with i = 0 . . . N −1. For each measured value ui a weight 
wi is introduced to suppress the bias associated with the correla-
tion between the instantaneous convection velocity and the con-
ditional expectation of the sampling rate. Appropriate weighting 
schemes are discussed in the following section.

2.1. Mean value

The mean value of the velocity u(t) is defined as

μ = 〈u(t)〉 (1)

with the expectation 〈·〉. For a given data set, the mean value 
instead is estimated as the ensemble mean of the samples ui , 
assuming both ergodicity and sufficiency. Considering appropriate 
weights wi , the mean value of the measured data set can be ob-
tained as

ū =

N−1∑
i=0

wiui

N−1∑
i=0

wi

. (2)

If the weighting scheme is appropriate, this estimator can be bias-
free. Only a random error remains due to finite sampling.

Various weighting schemes have been introduced and tested 
with laser Doppler data. At first glance, velocity weighting (wi =
1/ (|ui |γi)) [5,9] seems to be a suitable weighting scheme. Origi-
nally, |ui | is understood as the magnitude of the three-dimensional 
velocity vector and γi is the projection area of the ellipsoidal mea-
surement volume into the direction of the velocity vector. This 
weighting scheme specifically tackles the source of the statisti-
cal bias, namely the higher mean data rate at higher convection 
velocities. The effort required to measure all three components 
of the velocity is enormous. Therefore, for practical measurement 
systems, where only one or two velocity components are avail-
able, the missing components have been modelled. In other cases, 
the missing components have not been considered at all. However, 
these reductions are not suited to provide reliable bias correction 
in variable turbulent flow cases [6]. Additionally, this weighting 
method has been found to lead to significant systematic errors in 
the estimated statistical values if the data are superimposed with 
noise. Last, it fails if the spatial concentration of tracer particles 
varies with the velocity. This can happen if the seeding is gener-
ated at a fixed Eulerian point with a constant particle generation 
rate.

Inter-arrival time weighting (wi = ti − ti−1) [10] is robust even 
against altering correlations between the instantaneous data rate 
and the velocity [11]. However, the efficiency of this weighting 
method depends on the reduced data rate, which is the number 
of samples per integral timescale [12] (also called the data den-
sity). Equivalent results occur for sample-and-hold processing [13]. 
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