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Single-Carrier Frequency Division Multiple Access (SC-FDMA) signals have a Peak-to-Average Power Ratio 
(PAPR) problem. So, there is a need for PAPR reduction techniques to be implemented on these signals. 
The PAPR becomes larger as the modulation order increases. Recently, Conventional Selective Mapping (C-
SLM) has been used to reduce the PAPR of SC-FDMA signals. Unfortunately, the standard C-SLM technique 
requires the transmission of Side Information (SI) to the receiver side. In this paper, a Blind Selective 
Mapping (B-SLM) technique is proposed to reduce the PAPR in the SC-FDMA system, where there is no 
change in the C-SLM algorithm at the transmitter and no necessity for SI transmission. Our simulation 
results show that the PAPR performance of the proposed B-SLM technique is approximately the same 
as that of the C-SLM technique. The proposed technique is applied to the SC-FDMA system for Single-
Input Single-Output (SISO) and Multiple-Input Multiple-Output (MIMO) scenarios. The proposed B-SLM 
technique provides a reduction in bandwidth without a significant degradation in the Bit-Error Rate (BER) 
performance. Also, we present a comparison in the PAPR performance between the B-SLM and the other 
PAPR reduction techniques such as the Partial Transmit Sequence (PTS) and the C-SLM.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The SC-FDMA is a popular uplink technology in Long Term Evo-
lution (LTE) due to its low PAPR [1] compared with Orthogonal 
Frequency-Division Multiplexing (OFDM), but the SC-FDMA still 
suffers from the PAPR problem. Specifically, the SC-FDMA can be 
considered as an improved OFDM technique. High-order modula-
tions are suggested to achieve high spectral efficiency in 5G be-
cause of the small cells, where the Signal-to-Noise Ratio (SNR) may 
be very high [2]. However, the high-order modulations cause large 
PAPR in the SC-FDMA signals, especially for interleaved SC-FDMA 
(IFDMA) with a small roll-off factor [3]. The large PAPR results in 
low efficiency with a need for high-power amplifiers and leads 
to failure in satisfying the 5G requirements regarding energy ef-
ficiency [4]. Additionally, a low PAPR is desired in battery-oriented 
terminals because of the power limitations [5]. Hence, there is a 
need for efficient PAPR reduction schemes for SC-FDMA systems.

The major difference between SC-FDMA and OFDM is that a 
secondary orthogonal transformation is required for generating 
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SC-FDMA signals. The transformation comprises N-point Discrete 
Fourier Transforms (DFTs) and M-point Inverse Discrete Fourier 
Transforms (IDFTs). On the other hand, OFDM signals can be gen-
erated through an M-point IDFT, only. Despite the better PAPR 
performance of SC-FDMA systems compared to OFDM systems, the 
power variations during signal transmission resemble those of a 
multi-carrier transmission. Thus, there is still a need for PAPR re-
duction in SC-FDMA systems.

Recently, the C-SLM technique has been utilized for PAPR re-
duction [6]. In this technique, several candidate transmit blocks are 
generated by applying phase rotation on subcarriers after the DFT. 
The C-SLM can effectively reduce the PAPR of the SC-FDMA sig-
nals, but it requires transmission of SI, which is not recommended. 
The C-SLM without explicit SI has been widely studied for OFDM 
signal transmission [7–9].

In this paper, we present a B-SLM technique and apply it to 
interleaved SC-FDMA (IFDMA) and localized SC-FDMA (LFDMA) 
systems with different phase sequences (U ) as a PAPR reduction 
technique for SISO and MIMO scenarios. The rest of this paper 
is organized as follows. Section 2 discusses the conventional SC-
FDMA system model. Section 3 reviews the time-domain C-SLM 
technique. Section 4 presents the proposed B-SLM PAPR reduction 
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Fig. 1. Block diagram of the SC-FDMA transmitter.

Fig. 2. Generation of SC-FDMA transmit symbols. There are M total subcarriers, among which N (< M) subcarriers are occupied by the input data.

technique. Section 5 gives the simulation results. Finally, Section 6
gives the concluding remarks.

2. Conventional SC-FDMA system model

Fig. 1 shows the schematic diagram of the SC-FDMA system. 
It is possible to refer to SC-FDMA as DFT-spread OFDMA, where 
time-domain data symbols are converted to frequency domain by 
DFT before going through OFDMA modulation. Each user occupies 
different subcarriers in the frequency domain to achieve the or-
thogonality of the users. As a result, the PAPR is inherently reduced 
compared to the PAPR of OFDMA, which is based on multicarrier 
signals.

Generation of the symbols to be transmitted with SC-FDMA is 
illustrated in Fig. 2. There are in total M subcarriers, and each user 
is given a subset of subcarriers for the uplink transmission. For 
simplicity, we assume that each user has the same number of sub-
carriers N such that N < M . The input data symbol in the time 
domain has a symbol duration of T seconds, which after going 
through SC-FDMA modulation is compressed to T̃ = ( N

M ).T .
Analysis of the PAPR of the SC-FDMA system in the case of 

IFDMA subcarriers mapping mode is presented in this section. In 
the subsequent derivations, we will assume that M = Q .N and fol-
low the notations in Fig. 2, where Q is the bandwidth spreading 
factor.

Let {xn : n = 0, 1, . . . , N − 1} be the data symbols to be mod-
ulated. So, {Xk : k = 0, 1, . . . , N − 1} represents the frequency-
domain samples after DFT of {xn : n = 0, 1, . . . , N − 1}, {X̌l : l =
0, 1, . . . , M − 1} represents the frequency-domain samples after 
subcarriers mapping, and {x̃m : m = 0, 1, . . . , M − 1} represents the 
time-domain symbols after IDFT of {X̃l : l = 0, 1, . . . , M − 1}. The 
complex passband transmit SC-FDMA signal, x(t), for a block of 
data is represented as [10]:

x(t) = eiωct
M−1∑
m=0

x̃mr(t − mT̃ ) (1)

where ωc is the carrier frequency of the system and r(t) is the 
baseband pulse. In our research, a raised-cosine (rc) pulse shaping 
filter, which is widely implemented in wireless communications, is 
used. It is defined in the time domain as follows [10],

r(t) = sinc

(
π

t

T̃

) cos
(
παt

T̃

)
1 − 4α2t2

T̃ 2

(2)

where α is the roll-off factor, which ranges from 0 to 1.

The PAPR for the transmit signal x(t) in the case of rc pulse 
shaping is defined as follows, [10]

P A P R = Peak power of x(t)

Average power of x(t)
= max0≤t≤MT̃ |x(t)|2

1
MT̃

∫ MT̃
0 |x(t)|2dt

(3)

Without pulse shaping, the PAPR is expressed as follows [10],

P A P R = maxm=0,1,...,M−1 |x̃m|2
1
M

∑M−1
m=0 |x̃m|2 (4)

3. Time-domain C-SLM

In this section, we will describe the SC-FDMA system based on 
time-domain C-SLM as a PAPR reduction technique. The structure 
of this system is shown in Fig. 3 [11,12].

Clipping techniques have been widely used as PAPR reduction 
techniques, but they cause signal distortion [13,14]. On the other 
hand, the most popular distortionless PAPR reduction techniques 
are the C-SLM and the PTS. Actually, the PTS has higher computa-
tional complexity than that of the SLM. However, it achieves more 
PAPR reduction [15].

In the time-domain C-SLM technique, the input data block can 
be expressed as [12],

xn = [
x[0], x[1], . . . , x[N − 1]]T

(5)

It is multiplied by U different phase sequences represented as [12],

bu
n = [

bu
0,bu

1, . . . ,bu
N−1

]T
(6)

where each bu
n = e j∅u

n and ∅u
n ∈ [0, 2π ]. The ∅u

n is a random dis-
crete value in the range of 0 to 2π for n = 0, 1, . . . , N − 1 and 
u = 0, 1, . . . , U − 1 to produce a modified data block, which is de-
noted as [12],

xu
n = [

xu
n [0], xu

n [1], . . . , xu
n [N − 1]]T

(7)

By applying the N-point DFT, (FN), each block is converted to 
the frequency domain, and it can be represented as [12],

Xu
k = FNxu

n = [
Xu

0 , Xu
1 , . . . , Xu

N−1

]T
(8)

where [Fn]k.n = e
j2πkn

N

After that, each X is delivered to the subcarriers mapping step 
and the M-point IDFT, (FM)−1, which produces [12],
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