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a b s t r a c t

The problem of identifying sparse solutions for the link structure and dynamics of an unknown linear,
time-invariant network is posed as finding sparse solutions x to Ax = b. If the matrix A satisfies a rank
condition, this problem has a unique, sparse solution. Here each row of A comprises one experiment
consisting of input/output measurements and cannot be freely chosen. We show that if experiments are
poorly designed, the rank condition may never be satisfied, resulting in multiple solutions. We discuss
strategies for designing experiments such that A has the desired properties and the problem is therefore
well posed. This formulation allows prior knowledge to be taken into account in the form of known
nonzero entries of x, requiring fewer experiments to be performed. Simulated examples are given to
illustrate the approach, which provides a useful strategy commensurate with the type of experiments
and measurements available to biologists. We also confirm suggested limitations on the use of convex
relaxations for the efficient solution of this problem.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Compressed Sensing (CS) refers to the ability to find a sparse
solution x to the under-determined set of equations Ax = b
(Donoho, 2006a). This problem is relevant in applications in
computer vision and signal processing, where a signal often has
a representation that is sparse in some domain and can hence
be recovered by making relatively few samples in that domain
(Candès & Wakin, 2008). Specifically, suppose some signal θ ∈ Rn

can be expressed in a basis Φ ∈ Rn×n such that x = Φθ where x
is sparse in the sense that ∥x∥0 = k < n and ∥ · ∥0 denotes the
number of nonzero entries of a vector. By takingm < n samples of
x via an appropriately chosenmatrix A ∈ Rm×n, known as a sensing
matrix, we may recover x and hence θ .
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A related problem is that of identifying the link structure
and dynamics of an unknown network from certain observations
of it. This is a general inverse problem, currently of particular
importance in cell-biological applications, such as identifying
Genetic Regulatory Networks (GRNs) (Bansal, Belcastro, Ambesi-
Impiombato, & di Bernardo, 2007; De Smet & Marchal, 2010;
Marbach et al., 2002, 2010; Michailidis & d’Alché-Buc, 2013). In
this context the problem is typically under-determined due to both
a paucity of data and limitations on the number of experiments
that can be performed. The underlying network is often known to
be sparse in the sense that the degree of each node is bounded,
and the assumption of sparsity is commonly used as a heuristic
to obtain a solution (August & Papachristodoulou, 2009; Bansal,
Della Gatta, & di Bernardo, 2006; Bolstad, Van Veen, & Novak,
2011; Chang & Tomlin, 2011; Chiuso & Pillonetto, 2012; Gardner,
di Bernardo, Lorenz, & Collins, 2003; Materassi, Innocenti, Giarré,
& Salapaka, 2013; Napoletani & Sauer, 2008; Sanandaji, Vincent, &
Wakin, 2011; Seneviratne & Solo, 2012; Yeung, Tegnér, & Collins,
2002). This problem is fundamentally different from typical CS
applications in that the sensingmatrix cannot be chosen freely, but
arises based on the experiments applied and the underlying system
itself.

The network reconstruction problemwas considered for Linear,
Time-Invariant (LTI) systemswith full statemeasurement in Chang
and Tomlin (2011) using time-series data of a single perturbation
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to the network. If the perturbation stimulates all manifest states
and sufficiently many time points are observed, the solution is
shown to be unique and hence only one such experiment is
required. By assuming that the solution is sparse, the required
number of time points can be reduced. In Sanandaji et al. (2011),
sparse networks of FIR filters are treated, again with the aim of
reducing the number of data points required. The parameters of
the filters are estimated using Block Orthogonal Matching Pursuit
(Eldar, Kuppinger, & Bolcskei, 2010) and the notion of network
coherence is introduced, referring to the coherence (see end of
Section 2.1 and Candès & Romberg, 2007) of a network-derived
sensing matrix. Network coherence is observed to have a lower
bound for some cases, but must be sufficiently small for exact
solution via convex relaxations, suggesting a possible limitation for
efficient network reconstruction algorithms.

Other examples from the literature include Chiuso and
Pillonetto (2012), in which the problem is posed as sparse input
selection for MISO LTI systems and Materassi et al. (2013) which
concerns the estimation of sparse MISOWiener filters. For general
MIMO LTI systems with deterministic inputs, it was shown in
Gonçalves and Warnick (2008) that a certain number of targeted
inputs are required in order for the problem to be well posed. This
is equivalent to performing experiments to probe the network,
for example in a biological context using genetic mutations to
identify GRNs (Hayden, Yuan, &Gonçalves, 2013). Herewe suppose
that sufficient data points are available and consider whether the
assumption of sparsity can be used to reduce the number of such
experiments required. Our focus is therefore on the identifiability
of the network, rather than a particular method, although the
approach naturally provides an algorithm for steady state or
frequency domain identification.

Our contributions are as follows. First we give conditions
for sparse solution uniqueness and show that for a poor
choice of experiments even the sparsest solution may not be
unique. Specifically, for single-input experiments, multiple sparse
solutions may exist; in this case we derive constraints on possible
network topologies. Strategies for experiment design to ensure a
unique solution are then presented and evaluated in simulation.
This illustrates the effectiveness of the experiment design and
highlights the importance of low network coherence for solving
the problem efficiently using, for example, basis pursuit. As in
Sanandaji et al. (2011), the coherence is found to depend on
the magnitude of network parameters, presenting a fundamental
limitation to the approach.

In Section 2we review some standard results in CS and network
reconstruction for LTI systems. Then in Section 3 we discuss
how prior knowledge can be incorporated directly into the CS
framework and how this reduces the number of experiments
needed for a unique solution. Section 4 addresses the problem
of sparse network identifiability, first showing that the standard
assumptions of CS are not sufficient for exact reconstruction, then
proposing experimental procedures to ensure solution uniqueness.
Section 5 then provides a discussion of practical identification
issues. In Section 6 simulation examples are presented to support
the results and conclusions are given in Section 7.

Notation

Denote by A(i, j), A(i, :) and A(:, j) entry (i, j), row i and column
j respectively of matrix A and by AT its transpose. The diagonal
matrix comprising the diagonal entries of A is denoted Diag(A).
The function ∥x∥0 (the l0 ‘‘norm’’) returns the number of nonzero
entries in the vector x, which is said to be k-sparse if at most k of its
entries are nonzero: ∥x∥0 ≤ k. Thematrix A is row (column) sparse
if all of its rows (columns) are sparse.

2. Background

2.1. Compressed sensing

Sparse solutions, x ∈ Rn, are sought to the following problem:

Ax = b (1)

where A ∈ Rm×n and b ∈ Rm are known and m < n. The sparsest
such solution (or set of solutions) are the minimizing argument(s)
of:

min
x
∥x∥0 subject to Ax = b. (2)

The following well-known lemma (see for example Lemma 2.1
of Donoho, 2006b) provides a sufficient condition that the solution
to (2) is unique:

Lemma 1. If the sparsest solution to (2) has ∥x∥0 = k and m ≥ 2k
and all subsets of 2k columns of A are full rank, then this solution is
unique.

Proof. Suppose two solutions exist: Ax(1)
= b and Ax(2)

= b,
where ∥x(1)

∥0 = ∥x(2)
∥0 = k and subtract one equation from the

other:

A(x(1)
− x(2)) = 0.

Let l := ∥x(1)
− x(2)

∥0 ≤ 2k be the number of nonzero entries
in x(1)

− x(2); then construct the vector x̂ ∈ Rl by removing all
zero entries and construct the matrix Â ∈ Rm×l by removing the
corresponding columns from A. From the above equation, Â and x̂
satisfy: Âx̂ = 0, where (since l ≤ m) Â is full column rank and
x̂ ≠ 0, which is a contradiction.

Convex relaxations of (2) are typically sought, such as l1
minimization (basis pursuit Candès & Wakin, 2008), which can be
solved by linear programming:

min
x
∥x∥1 subject to Ax = b. (3)

It has been shown that l1 minimization solves exactly (2) ifm is
sufficiently large and thematrixA is sufficiently incoherent (Candès
& Romberg, 2007; Donoho, 2006b). Coherence is a measure of
similarity between pairs of columns of amatrix, defined as follows:

µ(A) = max
i<j

|AT
i Aj|

∥Ai∥2∥Aj∥2

where Ai denotes the ith column of A. If all columns are orthogonal,
the coherence is zero; if any two columns are linearly dependent,
the coherence is unity. The coherence property allows one to
distinguish problems with a unique solution (that can therefore
be solved by exhaustive minimization of (2)) from those that,
in addition, can be solved efficiently by the convex relaxation
(3). Numerical simulations suggest that in practice, most k-sparse
signals require m ≥ 4k in order to be recovered exactly by l1
minimization (Candès & Romberg, 2007).

2.2. Dynamical networks

Consider a vector of directly observed variables y(t) ∈ Rp,
whose entries yi(t) are governed by the following set of LTI
equations for i = 1, . . . , p:

yi(t) =

j≠i

qij(t) ∗ yj(t)+
r

k=1

pik(t) ∗ uk(t)+ vi(t) (4)
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