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In signal and image processing, Jeffrey’s divergence (JD) is used in many applications for classification, 
change detection, etc. The previous studies done on the JD between ergodic wide-sense stationary (WSS) 
autoregressive (AR) and/or moving average (MA) processes state that the asymptotic JD increment, which 
is the difference between two JDs based on k and (k − 1)-dimensional random vectors when k becomes 
high, tends to a constant value, except JDs which involve a 1st-order MA process whose power spectral 
density (PSD) is null for one frequency. In this paper, our contribution is threefold. We first propose an 
interpretation of the asymptotic JD increment for ergodic WSS ARMA processes: it consists in calculating 
the power of the first process filtered by the inverse filter associated with the second process and 
conversely. This explains the atypical cases identified in previous works and generalizes them to any 
ergodic WSS ARMA process of any order whose PSD is null for one or more frequencies. Then, we suggest 
comparing other random processes such as noisy sums of complex exponentials (NSCE) by using the JD. 
In this case, the asymptotic JD increment and the convergence speed towards the asymptotic JD are 
useful to compare the processes. Finally, NSCE and pth-order AR processes are compared. The parameters 
of the processes, especially the powers of the processes, have a strong influence on the asymptotic JD 
increment.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

In the field of signal and image processing or even in the field 
of control, models or processes are often compared. This is, for in-
stance, the case when dealing with identification issues where the 
estimated model parameters are compared with the true ones in 
order to analyze the estimation accuracy [1] [2]. Model compar-
ison also occurs when designing a Bayesian estimation approach 
based on Kalman filtering, H∞ filtering or particle filtering [3]. In 
this case, a priori modeling the system under study is necessary 
and leads to the state space representation (SSR) of the system. 
However, several problems may arise. On the one hand, the per-
formance of the estimation algorithm depends on how good the 
SSR fits the system. As it is not necessarily easy to set it properly, 
estimation approaches combining different models, or equivalently 
different SSRs, can be considered. This leads to multiple-model ap-
proaches such as the interactive multiple models [4] [5]. In this 
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case, selecting dissimilar models is suggested by Bar-Shalom in [6]. 
Therefore, a way to compare models a priori has to be designed. 
On the other hand, the practitioners may prefer models whose pa-
rameter estimation may be easier and which lead to SSRs that 
can be written in a simple way. Thus, they can propose to use 
an autoregressive (AR) model instead of a moving average (MA) 
model. Therefore, comparing AR and MA models can be useful es-
pecially when the power spectral density (PSD) is not null at some 
frequencies or does not exhibit resonances. Process comparison 
can also be of interest, especially in the field of image process-
ing when textures are compared [7]. In biomedical applications or 
flood forecast, change detection can be useful. In this latter case, 
the problem is to detect whether the statistical properties of a pro-
cess change over time. In the above situations, statistical properties 
have to be analyzed.

To address this issue, one could consider the spectral dis-
tance measures which include the log-spectral distance (LSD), the 
Itakura–Saito divergence (ISD), the Itakura divergence (ID), the 
model distance measure proposed by Itakura and their symmetric 
versions as well as parametric spectral distances such as the cep-
stral distance [8]. In [9], a comparative study was recently done 
between them. The l-norm (with l = 1, 2, ∞) between the true 
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model parameter vector and the estimated one could be also used, 
as well as the COSH distance [10]. As an alternative, general dis-
tance measures [8] can be considered. After the pioneering works 
of Pearson [11] in 1900, Hellinger [12] in 1909, Bhattacharyya in 
1943 [13] and Shannon [14] in 1948 where the measure of entropy 
and the mutual information were introduced, several researchers 
focused their attentions on quantifying how close two distributions 
are from one another: Kullback–Leibler (KL) divergence [15], also 
known as the relative entropy, generalized the notion of mutual 
information. In 1952, Chernoff [16] introduced another measure 
of divergence called Chernoff distance of order λ. In 1961, Rényi 
[17] suggested an extension of the entropy of order α for discrete 
probabilities. Then, the Rényi divergence of order α, also called 
α-divergence, was introduced. Then, in 1960s, another degree of 
generalization was proposed through the so-called f -divergences 
where the probability density function (pdf) ratio is weighted by a 
function f . They are also known as Csiszar f -divergences, Csiszar–
Morimoto divergences or Ali–Silvey distances. Depending on the 
choice of the function f , one can retrieve specific cases. Finally, 
f -dissimilarities have been introduced when more than two pdfs 
are considered. The reader may refer to [18] [19] for more details 
and for information about recent works.

Among the above measures, the KL divergence remains one of 
the most popular. Several authors analyzed it in various fields of 
applications, for classification, identification or change detection 
[7], [20], [9], [21] and [22]. Meanwhile, the estimations of the KL 
between two pdfs that are not necessarily Gaussian, by using sets 
of data, were studied. See [23] [24].

However, when dealing with Gaussian processes, the expression 
of the KL depends on the logarithm of the ratio between the co-
variance matrix determinants. Secondly, the KL divergence is not 
a distance: it is not symmetric and does not satisfy the triangular 
inequality. For the above reasons, a great deal of interest has been 
paid to the symmetric KL divergence, known as Jeffrey’s divergence 
(JD) [25]. When dealing with the JD, the symmetry conditions are 
satisfied. As the logarithms compensate each other, they no longer 
appear in the expression of the JD for the Gaussian case. Given all 
these considerations, we will focus our attention on the JD in the 
following.

When dealing with k-dimensional Gaussian random vectors of 
size k, the JD amounts to computing the sum of two traces of 
matrices, that can be expressed as the k × k covariance matrix 
of the first process pre-multiplied by the inverse of the covari-
ance matrix of the second process. When k increases, the resulting 
computational cost of the JD increases because the standard com-
putational burden of a generic k × k matrix inversion is usually 
O (k3) [26]. To address this problem with processes that are ergodic 
WSS autoregressive (AR) and/or moving average (MA), eigenvalue 
decomposition could be considered a priori. Analytical expressions 
of the eigenvalues and the eigenvectors exist for 1st-order MA 
processes [27]. Concerning 1st-order AR processes, estimates of 
eigenvalues have been proposed for a large correlation matrix [28]. 
However, to the best of our knowledge, these estimates do not ex-
ist for higher-order AR processes. For this reason, for a pth-order 
AR process, a LDL factorization could be rather used and requires 
the parameters of the AR process where the order varies between 
1 and p. Its computational cost is of O ( 2k3

3 ) [26]. Moreover, al-
ternative approaches have been proposed. Taking advantage of the 
Markovian properties of the AR process, the JD between the pdfs of 
the k successive samples of two pth-order time-varying AR (TVAR) 
processes or AR processes can be recursively computed [29]. In this 
case, the expression of the JD for k-dimensional vectors only de-
pends on matrices of size p, which significantly reduces the com-
putational cost. Then, this method has been used to classify more 
than two AR processes in different subsets [30]. The analytical ex-
pression of the JD between ergodic WSS 1st-order MA processes, 

that can be real or complex, noise-free or disturbed by additive 
white Gaussian noises, has also been studied in [31]. For this pur-
pose, the authors use the analytical expression of each element 
of the tridiagonal-correlation-matrix inverse [32]. Unlike pth-order 
AR processes, no recursive expression of the JD can be obtained for 
1st-order MA processes. Finally, comparing ergodic WSS 1st-order 
AR and ergodic WSS 1st-order MA processes by using the JD has 
been proposed in [33]. It is based on the expression of the inverses 
of the AR correlation-matrices [34].

Concerning the above cases, we can summarize the results we 
obtained as follows:
1) Links with Rao distance [35] have been proposed when it was 
possible. It was confirmed that the square of the Rao distance was 
approximately twice the value of the JD, except when a 1st-order 
MA process is considered whose zero is close to the unit-circle in 
the z-plane.
2) The JD tends to have a stationary regime. The difference be-
tween two JDs computed for k and (k − 1)-dimensional random 
vectors tends to a constant when k increases, except for a 1st-order 
MA process when the zero is on the unit-circle in the z-plane. 
This difference is called asymptotic JD increment when k becomes 
high. In previous papers [29] [31] [33], analytical expressions of 
the asymptotic JD increment are provided for AR and/or MA pro-
cesses. They depend on the parameters of the processes.
3) The asymptotic JD increment can be used to compare the ran-
dom processes instead of the JD between k successive samples of 
the processes. The resulting computation cost is smaller since the 
analytical expression of the asymptotic JD increment is a known 
function of the parameters of the processes. Large-size matrix in-
versions for different values of k and trace computations are no 
longer required.
4) As the asymptotic JD increment does not depend on k, the se-
lection of the number of variates k is no longer a problem for the 
practitioner.

Although various particular cases have been studied by taking 
advantage of the expressions of the inverses of the correlation ma-
trices [36][34], the JD between ergodic WSS ARMA processes of 
orders p and q, denoted as ARMA(p,q), has not been addressed yet 
as there is no explicit expression for the inverses of the correlation 
matrices. Therefore, it could be of interest to find an alternative 
approach. In this paper, we suggest giving an interpretation of the 
asymptotic JD increment in order to better understand the influ-
ence of each process parameter on the JD and to generalize the 
results we obtained to ARMA(p,q) processes. For this reason, our 
first purpose is to provide a new way to derive the asymptotic 
JD increment between WSS ARMA processes. It amounts to calcu-
lating the power of the first process filtered by the inverse filter 
associated with the second process and conversely. The second 
contribution of this paper is to study the JD that involves sums of 
complex exponentials that are disturbed by additive white noises 
(NSCE). Furthermore, at the end of the paper, a comparison be-
tween an AR process and an NSCE process is addressed by using 
the JD.

This paper is organized as follows: in section 2, we briefly re-
call the definitions and properties of the processes under study. In 
section 3, the expression of the JD is introduced and our contri-
butions are presented. In section 4, we apply our interpretation of 
the asymptotic JD increment to various random processes. Illustra-
tions are proposed in some cases, especially those based on NSCE 
processes. Finally, in section 5 we conclude our work. It is followed 
by an appendix that reveals some necessary derivations.

In the following, Ik is the identity matrix of size k and T r is the 
trace of a matrix. The upper-scripts T and H denote the transpose 
and the Hermitian of a matrix.

xk1:k2 = (
xk1 , ..., xk2

)
is the collection of samples from time k1

to k2. l is the label of the process under study. l = 1, 2.
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