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Bilinear systems are involved in many interesting applications, especially related to the approximation 
of nonlinear systems. In this context, the bilinear term is usually defined in terms of an input–output 
relation (i.e., with respect to the data). Recently, a different approach has been introduced, by defining 
the bilinear term with respect to the impulse responses of a spatiotemporal model, which resembles a 
multiple-input/single-output (MISO) system. Also, in this framework, the Wiener filter has been studied 
to address the identification problem of these bilinear forms. Since the Wiener filter may not be 
always very efficient or convenient to use in practice, we propose in this paper an adaptive filtering 
approach. Consequently, we develop and analyze some basic algorithms tailored for the identification of 
bilinear forms, i.e., least-mean-square (LMS), normalized LMS (NLMS), and recursive-least-squares (RLS). 
Simulations performed in the context of system identification (based on the MISO system approach) 
support the theoretical findings and indicate the appealing performance of these algorithms.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Bilinear systems have been found to be popular in a wide range 
of domains [1], being addressed in the literature in different ways 
and contexts. Most often, they are related to the approximation 
of nonlinear systems. It is known that a bilinear model can ap-
proximate a large class of nonlinear systems via a finite sum of 
the Volterra series expansion between the inputs and outputs of 
the system. Hence, a bilinear system can be considered among the 
simplest recursive nonlinear systems. On the other hand, bilinear 
systems behave similarly (to some extent) to linear models, which 
further simplify the analysis [2]. Therefore, they provide a good 
compromise between the accuracy of nonlinear systems and the 
tractability of linear systems.

Due to their practical features, the bilinear systems have been 
involved in many interesting applications, e.g., [3–17] and the ref-
erences therein. Among these, we can mention system identifica-
tion [4], [5], [14], digital filter synthesis [6], prediction problems 
[7], channel equalization [8], echo cancellation [9], chaotic commu-
nications [12], active noise control [13], [17], neural networks [16], 
etc. Many of these works were concerned with developing adap-
tive filtering algorithms for nonlinear systems modeled as bilinear 
systems. Nevertheless, in all these frameworks, the bilinear term is 
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defined with respect to the data, i.e., in terms of an input–output 
relation.

In this work, we focus on a different approach by defining 
the bilinear term with respect to the impulse responses of a spa-
tiotemporal model, in the context of multiple-input/single-output 
(MISO) systems. Recently, in [18], this problem has been addressed 
from a system identification perspective and two forms of the 
Wiener filter (namely direct and iterative) were developed in this 
context. However, the Wiener filter may not be always convenient 
to use in practice, due to some well-known limitations (e.g., matrix 
inversion, estimation of the statistics, etc.). Consequently, the next 
natural step is to analyze this framework in terms of an adaptive 
filtering approach, which represents the main motivation behind 
this paper. In this context, we focus on the most popular adaptive 
algorithms, i.e., least-mean-square (LMS), normalized LMS (NLMS), 
and recursive-least-squares (RLS).

Similar frameworks can be found in [19–24], in the context of 
particular applications, e.g., channel equalization [19], target detec-
tion [23], and nonlinear acoustic echo cancellation [20–22], [24]. 
However, most of these works were not associated or analyzed 
in conjunction with bilinear forms. Usually, they were referred as 
cascaded systems (e.g., similar to the Hammerstein model [25]) 
or joint adaptation processes, while the resulted algorithms were 
derived mostly in an ad-hoc manner, without analyzing their con-
vergence features in a more general framework. The main goal of 
this paper is to perform a first step toward the development and 
analysis of adaptive filters tailored for the identification of bilinear 
forms, under the general framework of a MISO system identifica-
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tion problem. The overall approach can be interpreted (to some 
extent) as a multidimensional adaptive filtering technique.

The framework and the algorithms proposed in this paper could 
be used in the context of different applications related to the iden-
tification of such bilinear forms. For example, nonlinear acoustic 
echo cancellation represents an appealing choice, since the gen-
eral configuration related to this application can be interpreted as 
a particular case of our proposed model; basically, in this con-
text, the general scheme reduces to a Hammerstein model [20–22], 
[24]. Also, we can link our contribution to multichannel interfer-
ence cancellation, e.g., in the context of adaptive noise cancellation 
(where the noise signal is picked up by a microphone array [26]) 
or multichannel dereverberation. In addition, the particular form of 
the MISO system could be exploited for the identification of block-
sparse systems [27]. For the sake of generality, we do not focus 
in this paper on one particular application, but on the capabilities 
and features of the proposed algorithms in the general framework 
of system identification.

The rest of the paper is organized as follows. In Section 2, the 
proposed signal model with bilinear forms is introduced. Next, the 
LMS algorithm tailored for bilinear forms is presented in Section 3, 
together with its convergence analysis. Section 4 is dedicated to 
the NLMS algorithm for bilinear forms; in this context, a vari-
able step-size version is also presented, aiming to achieve a proper 
compromise between the main performance criteria (i.e., conver-
gence rate versus misadjustment). In Section 5, the RLS algorithm 
for bilinear forms is introduced, targeting a faster convergence 
rate as compared to its LMS-based counterparts. Simulation results 
are presented in Section 6, in the context of system identification 
(from a MISO system perspective). Finally, Section 7 concludes this 
paper and outlines some perspectives for future works.

2. Signal model with bilinear forms

In the proposed approach, the bilinear term is defined with re-
spect to the impulse responses of a spatiotemporal model, in the 
context of MISO systems. Consequently, the signal model is

d(n) = hT X(n)g + w(n)

= y(n) + w(n), (1)

where d(n) is the zero-mean desired (or reference) signal at the 
discrete-time index n, h and g are the two impulse responses of 
the system of lengths L and M , respectively, the superscript T is 
the transpose operator,

X(n) = [
x1(n) x2(n) · · · xM(n)

]
(2)

is the zero-mean multiple-input signal matrix of size L × M ,

xm(n) = [
xm(n) xm(n − 1) · · · xm(n − L + 1)

]T (3)

is a vector containing the L most recent samples of the mth 
(m = 1, 2, . . . , M) input signal, y(n) = hT X(n)g is the bilinear form, 
and w(n) is the zero-mean additive noise. It is assumed that all 
the signals are real valued, and X(n) and w(n) are uncorrelated. 
A simple block diagram of this model is illustrated in Fig. 1(a).

The two impulse responses, i.e., h and g, correspond to the 
temporal and spatial parts of the system, respectively. It is easy 
to verify that for every fixed h, y(n) is a linear function of g, and 
for every fixed g, it is a linear function of h. Therefore, y(n) is 
bilinear in h and g [28].

It can be noticed that the reference signal from (1) can be ex-
pressed as

d(n) =
M∑

m=1

gmhT xm(n) + w(n)

=
M∑

m=1

ym(n) + w(n), (4)

which illustrates the processing line of each input signal, as shown 
in Fig. 1(b). On the other hand, based on the vectorization oper-
ation (i.e., conversion of a matrix into a vector [28]), the matrix 
X(n) of size L × M can be rewritten as a vector of length ML:

vec [X(n)] = [
xT

1 (n) xT
2 (n) · · · xT

M(n)
]T

= x̃(n). (5)

Consequently, the output signal y(n) can be expressed as

y(n) = hT X(n)g

= tr

[(
hgT

)T
X(n)

]
= vecT

(
hgT

)
vec [X(n)]

= (g ⊗ h)T x̃(n)

= fT x̃(n), (6)

where tr[·] denotes the trace of a square matrix, ⊗ is the Kro-
necker product, and f = g ⊗ h is the spatiotemporal impulse re-
sponse (of length ML), which is simply the Kronecker product 
between the two individual impulse responses g and h. Hence, the 
signal model in (1) results in

d(n) = fT x̃(n) + w(n), (7)

which can be seen as a particular form of a MISO system, as de-
picted in Fig. 1(c). In the general case of a MISO system, f has 
ML different elements. On the other hand, in this bilinear con-
text, f = g ⊗ h is formed with M + L different elements only even 
though it is of length ML.

A particular case of this system is the Hammerstein model 
[25], which is illustrated in Fig. 1(d). In this context, there is 
a single input signal, x(n), which passes through a cascade of 
two systems, i.e., a nonlinear block and a linear system. In this 
case, the reference signal is similar to (1), but the mth (m =
1, 2, . . . , M) column of the input signal matrix X(n) has a particu-
lar form, i.e., 

[
xm(n) xm(n − 1) · · · xm(n − L + 1)

]T . Based on 
this model, the cascaded adaptive filters were developed in the 
context of different applications, like nonlinear acoustic echo can-
cellation [20–22], [24]. However, they were not associated with 
bilinear forms or analyzed in a more general framework, like we 
target in this paper.

Based on the equivalent model in (7), the variance of d(n) is

σ 2
d = E

[
d2(n)

]
= (g ⊗ h)T R (g ⊗ h) + σ 2

w , (8)

where E[·] denotes mathematical expectation, R = E
[̃
x(n)̃xT (n)

]
is 

the covariance matrix of ̃x(n), and σ 2
w = E

[
w2(n)

]
is the variance 

of w(n). As a result, the signal-to-noise ratio (SNR) of the MISO 
system is

SNR = (g ⊗ h)T R (g ⊗ h)

σ 2
w

. (9)

The covariance matrix R consists of M2 submatrices of size 
L × L, i.e.,
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