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a b s t r a c t

To enhance the dynamic and static performance of the extremum seeking control (ESC) scheme, a novel
fast ESC scheme without steady-state oscillation is proposed, in which the structure of the classic ESC
scheme is adjusted to make the sinusoidal excitation signal amplitude locally exponentially converge to
zero. The improved ESC scheme can speed up the convergence to shorten the seeking time dramatically,
and enlarge the search area to avoid falling to local extrema effectively. It can also reduce the sinusoidal
excitation signal amplitude to eliminate the adverse effects of the steady-state oscillation eventually. The
rigorous stability analysis and proof of the improved ESC scheme are provided in detail, and the simulation
results are presented to illustrate its effectiveness and superiority. Finally, the application of the improved
ESC scheme to antilock braking systems (ABS) has been discussed through comparing with classical
perturbation-based ESC scheme and sliding-mode-based ESC scheme to illustrate the practicability of
the improved scheme.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Extremum seeking is a kind of adaptive control which can drive
and maintain the input and output of the controlled object to their
respective extrema. Extremum seeking control will work without
any explicit knowledge about the input–output characteristics
as long as the extrema exist, which is its greatest advantage.
Therefore, extremum seeking is a model independent control
scheme. Though extremum seeking scheme has been developed
for several decades, the first rigorous stability analysis of the classic
extremum seeking scheme was published by Wang and Krstić
(2000a,b). It appears that this paper renewed research interest
in the theory of extremum seeking, and consequently the last
decade has witnessed the significant development and numerous
applications (Moase, Manzie, Nešić, & Mareels, 2010). Among
them, Tan, Nešić, and Mareels (2008) studied how the different
excitation signal in extremum seeking scheme affects the system
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performance. Lavretsky, Hovakimyan, and Calise (2003) pointed
out that the amplitude of the excitation signal plays an important
role in the system performance.

Extremumseeking scheme is essentially amethod that achieves
and maintains the function extremum by obtaining gradient
information of the unknown function. Therefore, the extremum
seeking scheme could easily converge to one of the local extrema
if they exist. Committed to finding solutions to the problem, Tan,
Nešić, Mareels, and Astolfi (2009) proposed a global extremum
seeking scheme. A monotonically decreasing time function was
designed to adjust the amplitude of the excitation signal, so that
the searching arguments are expanded to get a certain ability to
overcome the possible convergence to a local extremum. However,
the performance of the scheme proposed by Tan et al. (2009) is
not prominent because the excitation signal amplitude only varies
with time. The same as the ordinary extremum seeking scheme,
the improved scheme still has a large steady-state oscillation,
which is undesirable, even not allowed for most practical systems.

In order to achieve the purpose of real-time optimality, the
scheme is required to have a fast convergence rate. Krstić (1999)
proposed a fast adaptive extremum seeking scheme to solve this
problem. By introducing a dynamic compensator, the gain and
phase margins of the feedback loop were improved to enhance
the stability of the system and increase the response speed of the
system. Compared with ordinary extremum seeking scheme it has
better dynamic performance (Zuo, Hu, & Shi, 2006). However, the
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dynamic compensator design is dependent on the prior knowledge
of the Wiener–Hammerstein model of the plant (Ariyur & Krstić,
2003), which brings inconvenience to its application.

As an application of extremum seeking control, the antilock
braking systems with extremum seeking control have been
investigated extensively (Dinçmen, Guvenc, & Acarman, 2014;
Drakunov, Özgüner, Dix, & Ashrafi, 1995; Tunay, 2001; Yu
& Özgüner, 2002; Zhang & Ordóñez, 2007). They all have
reached the control purpose that the braking time is short
and the tires are not locked during braking. However, most of
them do bring additional oscillations in steady-state due to the
perturbation signal and the sliding mode, respectively. Zhang and
Ordóñez (2007) proposed an extremum seeking scheme based
on numerical optimization through combining the numerical
optimization algorithm with state regulation. The steady-state
oscillation is successfully avoided when using the asymptotic
state regulator numerical optimization based extremum seeking
control. However, its real-time implementation will be affected
when using a sophisticated optimization algorithm. Besides, the
complex parameter adjustment of the scheme is not convenient
for its application, too.

Motivated by the above study, we proposed a novel extremum
seeking scheme in which the excitation signal amplitude can
change adaptively with the extremum estimation error (Wang,
Chen, & Zhao, 2014). The same as the scheme proposed by Tan
et al. (2009), our scheme can avoid falling into local extrema
effectively. The difference from the scheme proposed by Tan
et al. (2009) is that our scheme can eliminate the steady-state
oscillation due to the fact that the excitation signal amplitude
will fast converge to zero with the decrease of the extremum
estimation error. Furthermore it also has a strong adaptability to
the extremum perturbation. In this paper, we improve the scheme
further and give the rigorous stability proof of this improved
scheme using Singular Perturbation Theory, Averaging Method,
The Center Manifold Theorem and Lyapunov Method. We also
give a simulation example to validate the characteristics of non-
oscillating steady state of the improved scheme. Besides, the
application of the improved scheme to antilock braking systems
sufficiently illustrates the practicability of the scheme.

This paper is organized as follows. The problem formulation
is given in Section 2. The main results are stated in Section 3. In
Section 4 we discuss the improved scheme in detail. Section 5
consists of simulation example and application to ABS. Finally, a
brief summary of the full text is given in Section 6. Some lemmas
which are used in proof and auxiliary results are presented in the
Appendix.

2. Problem formulation

Consider a general single input and single output (SISO) nonlin-
ear model as follows:

ẋ = f (x, u) , y = h (x) , (1)

where f : Rn
× R → Rn and h : Rn

→ R are continuously differen-
tiable, x is the state, u is the input and y is the measurable output.
Suppose there exists a family control laws of the following form:

u = α (x, θ) , (2)

where θ ∈ R is a scalar parameter. The closed-loop system

ẋ = f (x, α (x, θ)) , (3)

then has an equilibrium point parameterized by θ . For simplicity,
θ is assumed to be scalar and (1), (2) is assumed to be SISO. Multi-
dimensional parameter situations could be acquired by extending
the results of the case of SISO. We make the following assump-
tions about the closed-loop system, which are the same as (Wang
& Krstić, 2000a,b).

Assumption 1. There exists a smooth function l : R → Rn, such
that f (x, α (x, θ)) = 0, if and only if x = l (θ).

Assumption 2. For each θ ∈ R, the equilibrium x = l (θ) of the
system (3) is locally exponentially stable.

This assumptionmeans that a control law can be designed for local
stabilization, independent of the modeling knowledge of either
f (x, u) or l (θ).

Assumption 3. There exists θ∗
∈ R such that

(h ◦ l)′

θ∗


= 0,

(h ◦ l)′′

θ∗


< 0.

(4)

Assumption 3 is made to ensure the function y = h (l (θ)) has a
maximum at θ = θ∗. Without loss of generality, the minimum
case would be treated identically by replacing y by −y. Let g (θ) =

(h ◦ l) (θ) represent a cost function of the maximum seeking
problem.

Remark 1. In this paper we only investigate local stability of the
extremumseeking control schemewithout steady-state oscillation
(ESCWSSO), which can be seen from the above assumptions. The
global study will be a topic of future research in our subsequent
work.

3. Main results

In this section we will investigate stability of a novel ESCWSSO.
This novel scheme is an improvement of the perturbation-based
extremum seeking scheme. The analysis of the proposed scheme
lends itself to an understanding of this improvement. The proposed
ESCWSSO is shown in Fig. 1.

The scheme shown in Fig. 1 introduces two new design
parameters ωl, r instead of the excitation signal amplitude in the
classic extremum seeking scheme. ωl is the cutoff frequency of the
low-pass filter and r is a constant gain for adjusting the speed of
convergence of the scheme. Note that a design constraint on r is
that the signal a should be positive. For details, see the Discussions
(Section 4). In addition,m is the low-frequency component in y.

The closed-loop system shown in Fig. 1 can be written as

ẋ = f (x, α(x, θ̂ + a sinωt)),
˙̂
θ = k (y − m) sinωt,
ȧ = −ωla + rωl (y − m) ,

ṁ = −ωhm + ωhy.

(5)

Introduce the new following coordinates

θ̃ = θ̂ − θ∗,

m̃ = m − h ◦ l(θ∗).
(6)

and we get

ẋ = f (x, α(x, θ∗
+ θ̃ + a sinωt)),

˙̃
θ = k(h(x) − h ◦ l(θ∗) − m̃) sinωt,
ȧ = −ωla + rωl(h(x) − h ◦ l(θ∗) − m̃),

˙̃m = −ωhm̃ + ωh(h(x) − h ◦ l(θ∗)).

(7)

For further analysis of Eq. (7), the design parameters are
selected as

ωh = ωωH = ωδω′
H = O (ωδ) ,

ωl = ωωL = ωεδω′
L = O (ωεδ) ,

k = ωK = ωδK ′
= O (ωδ) .

(8)
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