
Digital Signal Processing 75 (2018) 232–241

Contents lists available at ScienceDirect

Digital Signal Processing

www.elsevier.com/locate/dsp

Geometric target detection based on total Bregman divergence

Xiaoqiang Hua ∗, Yongqiang Cheng, Hongqiang Wang, Yuliang Qin, Dingchang Chen

School of Electronic Science and Engineering, National University of Defense Technology, Changsha, Hunan 410073, China

a r t i c l e i n f o a b s t r a c t

Keywords:
Riemannian manifold
Target detection
Total Bregman divergence
Geometric detection

This paper develops a geometric detection approach based upon the total Bregman divergence on the 
Riemannian manifold of Hermitian Positive-Definite (HPD) matrices to realize target detection in a clutter. 
First of all, the radar received clutter data in each range cell in one coherent processing interval is 
modeled and mapped into an HPD matrix space, which can be described as a complex Riemannian 
manifold. Each point of this manifold is an HPD matrix. Then, a class of total Bregman divergences are 
presented to measure the closeness between HPD matrices. Based on these divergences, the medians 
for a finite collection of HPD matrices are derived. Furthermore, the three divergences, namely the total 
square loss, the total log-determinant divergence, and the total von Neumann divergence are deduced, 
and their corresponding geometric detection methods are designed. The principle of detection is that if 
a location has enough dissimilarity from the median estimated by its neighboring locations, targets are 
supposed to appear at this location. Numerical experiments and real clutter data are given to demonstrate 
the effectiveness of the proposed geometric detection methods.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

There is a growing need for effective detection of the target 
embedded in the presence of clutter, which is very meaningful 
for modern radars to improve their detection performances [1,2]. 
In particular, it is difficult to enhance the detection signal-to-
clutter/noise ratio (SCR/SNR), when few pulses are available. In 
these situations, it seems to be important and challenge to achieve 
a satisfactory performance.

The classical fast Fourier transform (FFT) based constant false 
alarm rate (CFAR) detection algorithms [3] suffer from severe per-
formance degradation with few pulses available owing to the poor 
Doppler resolution as well as the energy spread of the Doppler 
filter banks. A strategy to circumvent these drawbacks was pro-
posed by Barbaresco [4–6]. As illustrated in Fig. 1, the data R i
in each range cell is a Hermitian positive-definite (HPD) matrix 
estimated by the sample data z according to its correlation coeffi-
cient. Then, calculate the distance between the covariance matrix 
R D of the cell under test and the mean matrix R̄ of reference cells 
around the cell under test. Finally, the detection is made by com-
paring the distance between R D and R̄ with a given threshold γ . 
In his work, a Riemannian geometry detection approach was de-
vised on the complex Riemannian manifold of HPD matrices. The 
radar echo is modeled using an HPD matrix, and the Riemannian 
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Fig. 1. Riemannian distance-based geometric detector [5].

metric is exploited to measure the dissimilarity between two HPD 
matrices. This method has been used for the monitoring of wake 
vortex turbulences [7–9], and target detection in coastal X-band 
and HF surface wave radars. Real sea clutter experiments are given 
to prove that the Riemannian distance-based geometric detection 
approach has better detection performance than the classical FFT-
CFAR detection algorithm [5]. Based on Barbaresco’s work, Balaji 
utilized the Riemannian mean to estimate the covariance matrix 
in space-time adaptive processing. It has been found that the pro-
jection algorithm with the Riemannian mean can yield significant 
performance gains [10,11].
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The geometric detection method has similar scheme with the 
FFT-CFAR processing. The differences between them lie in three 
ways: (1) the observation data in each cell is an HPD matrix, and 
not the FFT value of sample data; (2) the distance measures used 
in the geometric detector is the Riemannian distance or divergence 
measure, and not the Euclidean distance; and (3) the averaging 
process in geometric detector is geometric mean of a set of HPD 
matrices, not the arithmetic mean of scalar number. These dif-
ferences imply that the geometric detector performs on the HPD 
matrix space, in other words, the different geometry considered 
in detection. Our previous work [12] had provided a further proof 
of the superiority of the geometric detection method compared to 
the FFT-CFAR. In particular, an alternative measure, the Kullback–
Leibler divergence, was used as the distance between HPD matri-
ces. Moreover, the detection performance of the Kullback–Leibler 
divergence-based geometric approach is better than that of the 
Riemannian distance-based geometric approach [12]. It brings out 
a viewpoint that different measure used in this geometric detector 
results in different performance.

In addition to the Riemannian metric, a lot of divergences struc-
ture can be used as the measurements on the Riemannian mani-
fold of HPD matrices. There are many widely used divergences. The 
square loss function has been applied to regression analysis; the 
Kullback–Leibler divergence [13] has been used for measuring the 
dissimilarity between two probability density functions; and the 
Bhattacharyya divergence is exploited for Diffusion Tensor Mag-
netic Resonance Image (DT-MRI) segmentation [14,15]. Recently, 
in [16], the authors have defined a class of divergence, namely 
the total Bregman divergence, which has many perfect property. 
Based on this divergence, the l1-norm t-center is derived. The to-
tal Bregman divergence has been applied to DT-MRI analysis [16]
and shape retrieval [17].

In this paper, we extend the definition of total Bregman diver-
gence to the HPD matrix. The three divergences, namely the total 
square loss, the total log-determinant divergence, and the total von 
Neumann divergence, are defined to measure the dissimilarity be-
tween two HPD matrices. According to these divergences, the me-
dians for a finite set of HPD matrices are derived. Furthermore, we 
employ these divergences and their corresponding medians to de-
vise the geometric detector. Experimental results show that these 
divergences-based geometric detection methods have better per-
formance than the Riemannian distance-based geometric method 
as well as the FFT-CFAR algorithm.

The rest of this paper is organized as follows: Section 2 gives 
a concise description about how to construct HPD covariance ma-
trices from the original radar observation data; the extended def-
inition of the total Bregman divergence for HPD matrix is pre-
sented in Section 3; the total Bregman divergence-based medians, 
in particular, the total square loss median, total log-determinant 
divergence median, and total von Neumann divergence median, are 
derived in Section 4; results obtained from simulated data and real 
clutter data are presented in Section 5; Section 6 concludes our 
work.

1.1. Notation

A lot of notations are adopted as follows. We use math italic 
for scalars x, uppercase bold for matrices A, and lowercase bold 
for vectors x. The conjugate transpose operator is denoted by the 
symbol (·)H . tr(·) and det(·) are the trace and the determinant of 
the square matrix argument, respectively. I denotes the identity 
matrix, and C(n), H(n) are the sets of n-dimensional vectors of 
complex numbers and of n × n Hermitian matrices, respectively. 
The Frobenius norm of the matrix A is denoted by ‖A‖F . For any 
A ∈ H(n), A > 0 means that A is an HPD matrix, and denoted by 
P(n). Finally, E(·) denotes the statistical expectation.

2. Signal modeled using HPD matrix

For the radar received complex clutter data z = {z1, z2, . . . , zn}
in each cell in one coherent processing interval (CPI), where n is 
the length of data, assuming z is a complex circular multivariate 
Gaussian distribution, z ∼ CN(0, R), with zero mean and covari-
ance matrix R [5],

p(z|R) = 1

πn det(R)
exp

{−zH R−1z
}

(1)

with the covariance matrix R given by [5],

R = E
[
zzH] =

⎡
⎢⎢⎢⎣

r0 r̄1 · · · r̄n−1
r1 r0 · · · r̄n−2
...

. . .
. . .

...

rn−1 · · · r1 r0

⎤
⎥⎥⎥⎦ ,

rk = E[zi z̄i+k], 0 ≤ k ≤ n − 1, 1 ≤ i ≤ n (2)

where rk = E[zn z̄n+k] is called the correlation coefficient and z̄ de-
notes the complex conjugate of z. R is a Toeplitz HPD matrix with 
R H = R . It is well known that the stationary Gaussian processes 
have both ergodicity and strict stationarity. According to the er-
godicity, the correlation coefficient rk of data z can be calculated 
by averaging over time instead of its statistical expectation, as

r̂k = 1

n

n−1−|k|∑
n=0

z(n)z̄(n + k), |k| ≤ n − 1 (3)

The pulses data in each cell in one CPI are modeled by equa-
tions (1) and (2), and the information of target or clutter can 
be represented by its covariance matrix. Through parameterization 
using an HPD matrix, the radar echo z = {z1, z2, . . . , zn} can be 
mapped into an n dimensional parameter space.

ψ :C(n) → P(n), z → R ∈ P(n) (4)

Here P(n) forms a differentiable Riemannian manifold [18,19]
with nonpositive curvature [20]. HPD matrix manifold is a closed, 
self-dual convex cone, and served as a canonical higher-rank sym-
metric space [21]. An excellent overview for HPD manifold is pro-
vided in [22].

3. Total Bregman divergence on the Riemannian manifold of HPD 
matrices

In this section, the geometry of space of HPD matrices is de-
scribed first; and then we extend the definition of total Bregman 
divergence to the HPD matrix.

3.1. Geometry of the space of HPD matrices

Let H(n) = {A, AH = A} denotes the space of all n × n Hermi-
tian matrices. For A ∈ H(n), A > 0 if the quadratic form xH Ax > 0, 
∀x ∈ C

n . The subset of H(n) consisting of all positive-definite ma-
trices is a convex symmetric cone, which is denoted by [23]

P(n) = {
A ∈H(n), A > 0

}
(5)

The exponential of any Hermitian matrix is a positive-definite 
Hermitian matrix, and the principal logarithm of any positive-
definite Hermitian matrix is a Hermitian matrix [23].

It can be noted that P(n) is a differentiable manifold of dimen-
sion n(n + 1)/2 whose tangent space TA at any of its points A is 
identified with H(n). The infinitesimal arclength

ds := (
tr

(
A−1dA

)2)1/2 = ∥∥A−1/2dA A−1/2
∥∥

F (6)
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