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Recent advances in signal compression, sampling and analysis have accentuated the importance of sparse 
representations of signals. A plethora of measures have been presented in the literature for estimating 
signal sparsity. In this paper, based on the concept that sparsity is encoded in the differences among the 
signal coefficients, we propose a novel parametric Generalised Differential Sparsity (GDS) measure and 
we rigorously prove that satisfies a set of objective criteria. Moreover, we prove that GDS interpolates 
between l0 norm and Gini Index (GI), both of which prove to be specific instances of GDS, demonstrating 
the generalisation power of our framework. In showcasing the potential of GDS, we incorporate it in 
Simultaneous Perturbation Stochastic Approximation (SPSA) method and experimentally investigate its 
efficacy in recovering compressively sampled sparse signals. In the SPSA context, we prove that GDS, in 
comparison to GI, loosens the bounds of the assumed sparsity of the original signals and reduces the 
minimum number of compressive samples, required to guarantee an almost perfect recovery of heavily 
compressed signals. Finally, through a comparison with various sparse recovery methodologies, we show 
the superiority of SPSA+GDS in recovering both synthetic and real data.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Sparse representation of signals has been introduced as a 
premise that permits the solution of problems previously unsolv-
able, paving the way to unprecedented possibilities in fields like 
signal compression and reconstruction. Roughly speaking, spar-
sity measures the extent to which the information of a signal is 
distributed to the coefficients. For highly sparse signals, the infor-
mation is concentrated to a small portion of the coefficients, while 
for non-sparse signals the information is uniformly distributed 
across the coefficients. In this context, sparsity is a desirable prop-
erty, as it allows for succinct representations of large pieces of 
information. Recall the Occam’s razor, which dictates that among a 
set of representations, the most compact is always preferred [1].

There are many paradigms stemming from diverse research do-
mains advocating the importance of sparsity. Compressive Sam-
pling (CS) comprises the most vivid example, where the role of 
sparsity has been demonstrated in the process of compressing and 
reconstructing a signal [2]. More specifically, through the intro-
duction of the Null Space Property (NSP) [3], and the Restricted 
Isometry Property (RIP) [4], it has been proven that under the as-
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sumption of data sparsity, it is possible to perfectly reconstruct 
a signal that has been compressed using only few random sam-
ples of the original sparse signal. Towards this end, a variety of 
optimisation algorithms, which incorporate the notion of sparsity, 
have been proposed. For instance, the Dantzig selector solves an 
l1-regularisation problem in an attempt to estimate a ground truth 
sparse signal from few noisy projections of this signal [5]. In a sim-
ilar vein, sparsity has also been utilised in the Lasso algorithm for 
recovering sparse representations of high-dimensional signals [6]. 
More recently, an interesting parallel implementation of compres-
sive sampling matching pursuit (CoSaMP) offers a very efficient 
algorithm for sparse signal recovery [7].

Apart from the aforementioned applications, the notion of spar-
sity has also been exploited by already existing methods in var-
ious fields. For instance, it has been incorporated in traditional 
Bayesian learning methods for the recovery of block-sparse signals 
[8]. Moreover, in Support Vector Machines (SVM), optimal guaran-
tees on the sparsity of the support vector set encoding the bound-
ary between two classes, have also been investigated [9]. Sparsity 
appears to play a key role in boosting techniques as well, lead-
ing to sparse combinations of a number of weak classifiers [10]. 
Additionally, it has also found its way in other applications, such 
as one-bit compressed sensing [11], dictionary learning [12] and 
sparse principal component analysis (S-PCA) [13].
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Given the importance of sparsity, it is essential to find an ef-
fective way to measure it. Apparently, the way sparsity is defined 
and measured is dictated by the specific purpose it is designed to 
serve. In this paper, in the context of CS, we are particularly con-
cerned with the role of sparsity in the reconstruction of signals 
which have been heavily compressed using random projections. 
Signal reconstruction covers a large portion of the problems that 
concern sparsity. Hence, the conclusions drawn from our analysis 
are expected to have impact on other case studies as well.

Formally, the core idea of sparsity, as this has originally been 
introduced in CS, is to count the integer number of non-zero co-
efficients of a signal, measured by the l0 norm [2]. In practice 
though, this proves to be a very strict definition, as rarely in real-
world problems signals contain exact zeros. As a consequence, the 
research community has resorted to new relaxed measures of spar-
sity whose actual objective is to estimate an approximation of the 
number of non-zero coefficients, allowing sparsity to take decimal 
values. Along these lines, the notion of sparsity is usually referred 
to as signal compressibility. From now on though, in our work, we 
will consistently use the term sparsity even in the cases where we 
will actually refer to signal compressibility.

For assessing the credibility of any sparsity measure, a number 
of objective criteria have been proposed in the literature, enabling 
the comparison between different measures [14,15]. The origin of 
these criteria stems from the financial science, where the notion 
of sparsity is analogous to the inequity of wealth distribution in a 
human society [16]. So far, to the best of our knowledge, the only 
measures that satisfy these criteria are the Gini Index (GI) [14], and 
the S∗ [15]. In particular, in connection with our work, the GI has 
led to impressive results in reconstructing compressively sampled 
signals [17].

In this paper, we propose a novel Generalised Differential Spar-
sity (GDS) measure, which is based on the differences among 
the signal coefficients. Due to an adjustable parameter, which 
from now on we call the order, GDS can offer different measure-
instances. We rigorously prove that these GDS measure-instances 
satisfy all the objective criteria for sparsity measures [14,15]. In 
addition, although the computation of GDS using its original for-
mula is tractable even for large values of its order, it proves to be 
cumbersome for high-dimensional data. For dealing with the above 
shortcoming, we provide an equivalent formula of GDS, which al-
lows for its efficient calculation when the number of dimensions 
is high. The drawback though of the latter formula is that in con-
trast to the original one, it is costly for big values of the order of 
GDS. Consequently, both formulas prove to be useful and can be 
used interchangeably according to the given circumstances.

As part of our analysis, we prove that the order of GDS de-
termines the tendency of the corresponding measure-instance to 
qualify an arbitrary signal as sparse. Moreover, interestingly, we 
prove that both GI and l0 norm comprise measure-instances of GDS 
for the two extreme values of the order parameter, i.e. 1 and +∞, 
respectively. This finding highlights the generalisation power of 
GDS in unifying and extending already existing measures, but most 
importantly shows that GDS constitutes an interpolation between 
GI and l0. This proves to be a great advantage, offering GDS the 
flexibility to adjust to data whose coefficients are generated using 
several fundamental distributions, i.e., Binomial, Uniform, Normal 
and Exponential, where either GI or lp norms may fail.

In verifying the above claim, we have used GDS to reconstruct 
sparse signals which have been heavily compressed via random 
projections. For this purpose we have employed the reconstruction 
approach presented in [17], which combined with GI has returned 
excellent results. The reconstruction is performed by incorporating 
a sparsity measure into Simultaneous Perturbation Stochastic Ap-
proximation (SPSA) method that solves a dedicated sparsity max-
imisation problem. More specifically, given a compressed signal 

and based on the prior assumption that the original signal before 
compression was sparse, the idea is to find in the original space, 
the signal with highest sparsity that gives the smallest reconstruc-
tion error.

In contrast to lp norms which use the energy of a signal to esti-
mate its sparsity, GDS could be characterised as an “entropy-based” 
sparsity measure, since through the use of the differences among 
the magnitudes of the coefficients, it indirectly uses the distribu-
tion of the energy to the coefficients. Conceptually, the above view-
point of GDS may prove to be beneficial in the above-mentioned 
sparse signal reconstruction problem. More specifically, put in the 
above maximisation scheme as an objective function, GDS has 
the advantage to increase the sparsity of the compressed signal 
by re-distributing at each iteration the energy to the coefficients, 
thus changing its form, and not necessarily reducing the total en-
ergy of the signal. Based on this feature, GDS has the potential 
to extend the applicability of sparsity maximisation approaches to 
signals with all coefficients far from zero and non-uniformly dis-
tributed. On the contrary, lp norms may miss the correct form of 
the original signal as they basically aim to reduce the energy of the 
compressed signal and the sparsity maximisation method relies 
strongly on the problem constraints to prevent signal-estimates ar-
bitrarily close to zero.

The above potential to outperform lp norms in sparse signal re-
construction has already been proven in [17] by GI, which builds 
on the same rationale as GDS. In this paper, we experimentally 
prove that incorporating GDS to the previous reconstruction ap-
proach, in comparison with GI, loosens the assumptions of both 
the underlying sparsity of the original signal and the minimum 
number of compressive samples, required to perfectly reconstruct 
an original signal from its compressed version. In other words, 
GDS offers further compression capacity to lowly sparse signals 
and simultaneously allows for using a smaller number of compres-
sive samples without increasing the reconstruction error. Along the 
same lines, it is proven that the optimal order of GDS is strongly 
dependent on the type and sparsity of the original data as well as 
the desired compression level. This finding justifies the rationale 
behind using different values for the order of GDS and provides a 
useful rule of thumb in deciding what order of GDS is the appro-
priate for certain problem parameters.

Extending our analysis, through a comparison with numerous 
state-of-the-art sparsity measures, we prove the superiority of GDS 
in the context of SPSA and we propose SPSA+GDS as an effec-
tive method for reconstructing sparse signals. Towards this end, 
we compare SPSA+GDS in both synthetic and real data with three 
sparse recovery methodologies, namely Basis Pursuit (BP), Orthog-
onal Matching Pursuit (OMP) and Compressive Sampling Matching 
Pursuit (CoSaMP). The results illustrate the ability of SPSA+GDS 
to reconstruct signals from their compressive samples more accu-
rately and effectively than conventional approaches, showing the 
strong potential of our proposed methodology.

2. Related work

2.1. Sparsity measures

As already mentioned, the most straightforward way to mea-
sure sparsity is through the l0 norm [18]. However, in the context 
of CS, l0 was very early replaced by lp norms of higher order, sur-
passing some of the shortcomings accompanying the former [18]. 
Towards this direction, it has been proven that the classical er-
ror correcting problem can be translated into an l1-optimisation 
problem, which can be trivially solved with linear programming 
methods such as the Homotopy method [19,20]. In [21], the au-
thors propose a methodology for sparse signal recovery that often 
outperforms the l1-minimisation problem by reducing the number 
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