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a b s t r a c t

The paper presents an observer design for a class of hyperbolic PDE–ODE cascade systemswith a boundary
measurement. The cascade systems consist of coupled PDEs, featuring one rightward and one leftward
convecting first-order transport PDEs, and a set of ODEs, which enter the PDEs through the left boundary
of the systems. The design, which is based on the Volterra integral transformation, relies only on a single
sensor at the right boundary of the system. The observer consists of a copy of the plant plus output
injection terms both in the PDEs and the ODEs. The observer is constructed in a collocated setup, which
means both sensing and actuation are located at the same boundary. The observer gains are computed
analytically by solving Goursat-type PDEs in terms of Bessel function of the first kind. The observer design
is tested against a field scale flow-loop test experiment in Stavanger by Statoil Oil Company. The results
show that the observer converges to the actual values and that the design can be used as a process
monitoring tool in oil well drilling.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Problem statement

We consider a boundary observer design for a class of
semilinear hyperbolic PDE–ODE cascade systems which can be
transformed into the following form:

wt(x, t) = 6(x)wx(x, t)+Ω(x)w(x, t)+ f(w(x, t), x) (1)
w1(0, t) = qw2(0, t)+ CX(t) (2)
w2(1, t) = U(t) (3)

Ẋ(t) = AX(t) (4)

wherew = [w1 w2]
ᵀ and w : [0, 1] × [0,∞) → R2.

The matrices 6(x) andΩ(x) are given by:

6(x) =


−ϵ1(x) 0

0 ϵ2(x)


, Ω(x) =


0 ω1(x)

ω2(x) 0


(5)
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where ϵ1(x), ϵ2(x) > 0. The subscripts x and t denote partial
derivativeswith respect to x and t , respectively. The constant q ≠ 0
and U(t) is the control input. X(t) is an n-dimensional vector, A
is an n × n matrix and C is an 1 × n matrix. The function f :

R2
× [0, 1] → R2 constitutes nonlinear terms. The objective of

this paper is to design an observer for the cascade system (1)–(4)
with only one boundary measurement at x = 1, i.e.,
y(t) = w1(1, t). (6)
This state observer problem was solved for the linear case with-
out disturbance (f = 0,A = 0, and C = 0) in Vazquez, Coron,
and Krstic (2011) and for the linear case with disturbance in Aamo
(2013). In Coron, Vazquez, Krstic, and Bastin (2013), the state feed-
back stabilization problem was solved for the quasilinear systems
(without disturbance). The controllability of the quasilinear sys-
tems with nonlinear source has been studied in, e.g., Wang (2006).

The following assumptions are used in this paper:

Assumption 1. The first derivatives of the entries in 6 are
continuously differentiable, i.e., ϵ1, ϵ2 ∈ C1([0, 1]), while the
entries inΩ are continuous, i.e., ω1, ω2 ∈ C([0, 1]).

Assumption 2. The function f is twice continuously differentiable
with respect tow. Furthermore, f(0, x) = 0 and df

dx (0, x) = 0.

Assumption 3. The pair (A, C) is observable.

Assumption 4. The control lawU is continuous, i.e.,U ∈C([0,∞)).
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1.2. Motivation and previous works

Physical systems which can be modeled and transformed into
the first-order hyperbolic PDE–ODE cascade systems (1)–(4) have
attracted considerable attention in research communities because
these systems can be used tomodel various processes such as road
traffic (Goatin, 2006), gas flow pipeline (Gugat & Dick, 2011), and
flow of fluids in transmission lines (Hasan & Imsland, 2014;White,
2007) and in open channels (Coron, Andrea-Novel, & Bastin, 2007).
A typical problem is to estimate the states and the parameters of
the systems using a limited number of measurements. In many
cases, the only reliable measurement is located at the boundary.
These estimated states and parameters are in turn used in a
feedback control algorithm that automates the control input to
maintain a desired state trajectory. Observer design for PDE–ODE
cascade systems has been studied for many types of coupling such
as an ODE and a diffusion PDE (Krstic, 2009a; Susto & Krstic, 2010;
Tang & Xie, 2011), an ODE and a hyperbolic PDE (Bekiaris-Liberis
& Krstic, 2011; Hasan, Krstic, & Aamo, 2015; Krstic & Smyshlyaev,
2008a), and an ODE and a wave PDE (Bekiaris-Liberis & Krstic,
2010; Krstic, 2009b).

The results in this paper employ the backstepping method, and
in particular build on the results of Aamo (2013); Coron et al.
(2013); Vazquez et al. (2011). The backstepping method has been
successfully used as control and state estimation designs for many
PDEs such as the parabolic-type equation (Jadachowski, Meurer, &
Kugi, 2014; Meurer, 2013), the Ginzburg–Landau equation (Aamo,
Smyshlyaev, & Krstic, 2005), and the Schrödinger equation (Krstic,
Guo, & Smyshlyaev, 2011). The idea is to use a Volterra integral
transformation to transform the original system into a target
system (Krstic & Smyshlyaev, 2008b). The stability of the target
system is usually known beforehand. For some cases, the gains for
both the controller and the observer, can be computed analytically
in terms of the Bessel function (Smyshlyaev & Krstic, 2005) or the
Marcum Q-function (Vazquez & Krstic, 2014).

The applicability of the results obtained in the present paper
are demonstrated on a problem from the oil and gas industry
in Section 4. Backstepping has found several applications in oil
and gas, including the gas coning problem Hasan, Foss, and
Sagatun (2013); Hasan, Sagatun, and Foss (2010), flow in porous
media (Hasan, Foss, & Sagatun, 2012), slugging control (Di Meglio,
Vazquez, Krstic, & Petit, 2012), the lost circulation and kick
problem (Hasan, 2014a, 2015; Hauge, Aamo, & Godhavn, 2013),
and the heave problem (Anfinsen & Aamo, 2015; Hasan, 2014b).

1.3. Contribution of this paper

The contribution of this paper is an observer design for a
class of hyperbolic PDE–ODE cascade systems with a boundary
measurement. We employ a composition of two transformations,
one Volterra-based backstepping transformation of the PDE
observer state, and one transformation of the transformed PDE
observer state with a spatially scaled shift based on the ODE
observer state. The observer consists of the plant plus output
injection terms, where the gains are found explicitly in terms of
Bessel functions of the first kind. The stability of the target system
is studied using a Lyapunov functional. Two cases are considered,
linear (f = 0) and semilinear (f ≠ 0). In the linear case we
show that the observer error system is globally exponentially
stable in the L2-norm, while in the semilinear case we show the
observer error system is locally exponentially stable in the H2-
norm. The observer design is tested against a field scale flow-loop
test experiment in Stavanger by Statoil Oil Company.

1.4. Organization of the paper

The paper is organized as follows. Section 2 contains prelimi-
nary definitions and notations used throughout the paper. The ob-
server designs for both linear and semilinear cases are presented
in Section 3. In Section 4, a real case application of oil well drilling
where we estimate the flow, the pressure, and the downhole rate
under lost circulation is presented. Finally, Section 5 contains con-
clusions and recommendations.

2. Preliminary definitions

For a vector γ(x) ∈ R2 with components γ1(x) and γ2(x),
we denote |γ(x)| = |γ1(x)| + |γ2(x)|, and we define ∥γ∥∞ =

supx∈[0,1] |γ(x)|, ∥γ∥L1 =
 1
0 |γ(ξ)| dξ , and ∥γ∥L2 =

 1
0 γ(ξ)ᵀ

γ(ξ) dξ
1/2. Furthermore, we define the following norms:

∥γ∥H1 =


∥γ∥2

L2 +

 1

0
γx(ξ)

ᵀγx(ξ) dξ
1/2

(7)

∥γ∥H2 =


∥γ∥2

H1 +

 1

0
γxx(ξ)

ᵀγxx(ξ) dξ
1/2

. (8)

For a 2 × 2 matrix D, we denote:

|D| = max

|Dv|; v ∈ R2, |v| = 1


. (9)

For the kernel matrices K, we denote:

∥K∥∞ = sup
(x,ξ)∈T

|K(x, ξ)| (10)

where T = {(x, ξ) : 0 ≤ ξ ≤ x ≤ 1}. For γ ∈ H2([0, 1]) and
positive constants c1, c2, c3, c4, c5, and c6, recall the followingwell-
known inequalities (Coron et al., 2013):

∥γ∥L1 ≤ c1∥γ∥L2 ≤ c2∥γ∥∞ (11)

∥γ∥∞ ≤ c3

∥γ∥L2 + ∥γx∥L2


≤ c4∥γ∥H1 (12)

∥γx∥∞ ≤ c5

∥γx∥L2 + ∥γxx∥L2


≤ c6∥γ∥H2 . (13)

3. Observer design

We consider first the linear case, f = 0. The semilinear design
is found by utilizing the result from the linear design. We assume
that we can measure w1(x, t) at x = 1, and design an observer to
estimate bothw and X.

3.1. Linear system

We design the collocated observer as a copy of the plant plus
output injection, that is

ŵt = 6(x)ŵx +Ω(x)ŵ + p(x)

w1(1, t)− ŵ1(1, t)


(14)

ŵ1(0, t) = qŵ2(0, t)+ CX̂(t) (15)
ŵ2(1, t) = U(t) (16)

˙̂X(t) = AX̂(t)+ eAdL

w1(1, t)− ŵ1(1, t)


(17)

where d =
 1
0

dχ
ϵ1(χ)

. Defining error functions as w̃ = w − ŵ and

X̃ = X − X̂, the error dynamics is given by

w̃t = 6(x)w̃x +Ω(x)w̃ − p(x)w̃1(1, t) (18)

w̃1(0, t) = qw̃2(0, t)+ CX̃(t) (19)
w̃2(1, t) = 0 (20)

˙̃X(t) = AX̃(t)− eAdLw̃1(1, t) (21)



Download English Version:

https://daneshyari.com/en/article/695187

Download Persian Version:

https://daneshyari.com/article/695187

Daneshyari.com

https://daneshyari.com/en/article/695187
https://daneshyari.com/article/695187
https://daneshyari.com

