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This paper deals with joint design of sensing matrix and sparsifying dictionary for compressed sensing 
(CS) systems. Based on the maximum likelihood estimation (MLE) principle, a preconditioned signal 
recovery (PSR) scheme and a novel measure are proposed. Such a measure allows us to optimize the 
sensing matrix and dictionary jointly. An alternating minimization-based iterative algorithm is derived for 
solving the corresponding optimal design problem. Simulation and experiments, carried with synthetic 
data and real image signals, show that the PSR scheme and the CS system, obtained using the proposed 
approaches, outperform the prevailing ones in terms of reducing the effect of sparse representation 
errors.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Compressed sensing (CS) has attracted a lot of attention in 
the signal processing community since its appearance in the early 
2000s [1–3]. Mathematically, CS is a framework that involves com-
pressing a signal vector x ∈ �N×1 into a low dimensional one 
y ∈ �M×1 (M � N) via

y = �x (1)

and reconstructing the original signal x from the measurement y. 
The matrix � ∈ �M×N is called a sensing/projection matrix.

Let x ∈ �N×1 be modeled as a linear combination of a set of 
vectors {ψl}L

l=1
1:

x =
L∑

l=1

s(l)ψl � �s (2)

where the matrix � ∈ �N×L is usually called a dictionary and is 
said over-complete if N < L and s is the coefficient vector. We say x
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is κ-sparse (in �) if ‖s‖0 ≤ κ , where ‖s‖0 denotes the number of 
non-zero elements in s.

A CS system refers to equations (1)–(2), characterized with the 
sensing matrix � and dictionary �. Its ultimate goal is to recon-
struct the original signal x from y that senses the former via (1). 
Traditionally, the reconstructed signal is given by x̂ = �ŝ with ŝ
being a proper solution of the following problem

y = As (3)

where A � �� is called the equivalent dictionary.
As M < N , equation (3) has an infinite number of solutions. To 

make the above equation have a unique solution, extra properties 
of this linear system have to be enforced and the concept of spark
is one of such properties. The spark of a matrix A ∈ �M×L , de-
noted as spark(A), is defined as the smallest number of columns 
in A that are linearly dependent. It was shown in [4] that as long 
as spark(A) > 2κ , any κ-sparse signal x0 = �s0 can be exactly re-
covered from its measurement y = �x0 by solving

s0 = arg min
s

‖s‖0 s.t. y = As (4)

or

s0 = arg min
s

‖y − As‖2
2 s.t. ‖s‖0 ≤ κ (5)

where ‖.‖p denotes the lp -norm of vector v ∈ �N×1 and is defined 
as
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‖v‖p � (

N∑
n=1

|v(n)|p)1/p, p ≥ 1 (6)

In general, both of the problems (4) and (5) are NP-hard. The prob-
lem defined in (5) is practically addressed using greedy algorithms 
such as the orthogonal matching pursuit (OMP) technique [5–9]. 
Furthermore, it can be shown [4] that under some conditions, (4)
is equivalent to the following l1-based minimization

s0 = arg min
s

‖s‖1 s.t. y = As (7)

which can be solved efficiently using algorithms such as basis pur-
suit (BP) [3] and the l1/l2-based optimization techniques [10].

1.1. Related works

Designing optimal CS systems usually refers to determine a pair 
(�, �) such that the corresponding CS system yields a desired per-
formance in terms of signal compression and signal recovery. Such 
performance depends strongly on the properties of � and �.

As mentioned above, the spark of the equivalent dictionary is 
one of the properties for exact reconstruction. The restricted isom-
etry property (RIP) [2], [3] is another one. A matrix A is said 
(κ, δ)-RIP if there exists a δ with 0 ≤ δ < 1 such that

(1 − δ)‖s‖2
2 ≤ ‖As‖2

2 ≤ (1 + δ)‖s‖2
2

holds for all s satisfying ‖s‖0 ≤ κ . It has been shown that when 
A = �� is (2κ, δ)-RIP, a κ-sparse x in � can be reconstructed ex-
actly from its low dimensional measurement [2–4]. Furthermore, 
as shown in [4], [5], any κ-sparse coefficient vector s can be ex-
actly obtained from y = As as long as

κ <
1

2
[1 + 1

μ(A)
] (8)

where μ(A) is the mutual coherence of matrix A and is defined as

μ(A) � max
1≤i 	= j≤L

{ | < A(:, i), A(:, j) > |
‖A(:, i)‖2‖A(:, j)‖2

� ri j} (9)

where < ., . > and ri j denote the inner product and the cross-
correlation factor between two vectors, respectively. Roughly 
speaking, μ(A) measures the maximum linear dependency pos-
sibly achieved by any two columns of matrix A.

The relation specified by (8) suggests that the equivalent dictio-
nary with small mutual coherence can enlarge the signal space in 
which the coefficient vector s can be achieved exactly. The optimal 
sensing matrix design, initialized in [11], deals with how to de-
sign the sensing matrix � with a dictionary � given such that the 
CS system yields an accurate reconstruction of signals. This can be 
achieved via choosing � to enhance the mutual coherence prop-
erty of the equivalent dictionary A. A class of approaches under 
this framework can be unified as

�̃ � arg min
�,H

‖H − AT A‖2
F

s.t. H ∈ SH , A = �� (10)

where ‖.‖F denotes the Frobenius norm and SH is a non-empty 
set of target Gram matrices of desired mutual coherence with 
H(k, k) = 1, ∀ k. See [12–22].

In (10), the target Gram H has its diagonal elements all equal to 
one and the Gram AT A is directly related to the coherence behav-
ior of A if and only if ‖A(:, l)‖2 = 1, ∀ l. In order to make the cost 
function have the designated physical meaning, (10) was studied 
recently in [23] with an additional constraint: ‖A(:, l)‖2 = 1, ∀ l, 
and the corresponding problem was attacked using a gradient de-
scent algorithm.

Dictionary design is to find a dictionary to represent a class 
of signals for a given sparsity level κ . Typical examples include 
the Fourier matrix for frequency-sparse signals, a multiband modu-
lated Discrete Prolate Spheroidal Sequences (DPSS’s) dictionary for 
sampled multiband signals [24,25], and learning a sparsifying dic-
tionary from a training dataset. Let X ∈ �N× J with X(:, j) = x j be 
the data matrix formed by a collection of training samples {x j} J

j=1
from a certain class of signals. The traditional dictionary learning 
is to solve the following problem

{�̃, S̃} � arg min
�,S

‖X − �S‖2
F

s.t. ‖S(:, j)‖0 ≤ κ, ∀ j

‖�(:, l)‖2 = 1, ∀ l (11)

where the normalization constraint on dictionary is mainly for 
avoiding degenerate solutions as the solutions to minimizing ‖X −
�S‖2

F w.r.t. � and S are not unique. A practical approach used to 
attack such a highly non-convex problem is based on the alternat-
ing minimization strategy [26–33].

1.2. Problems to be investigated

It should be pointed out that the sensing matrices obtained us-
ing the classical approaches (10) do yield a very good performance 
when the signals to be compressed are exactly sparse in a dictio-
nary �. A more practical signal model is

x = �s + e (12)

where e is the representation error, which is practically not nil 
in general. In that case, the CS system using the sensing matrix 
designed based on (10) usually fails in resulting an accurate recon-
struction. See Section 4.2.2 and also [35,36] for a typical example 
in image compression. The main reason for this phenomenon is 
due to the fact that the classical approaches (10) to optimal sens-
ing matrix design do not take into account of priori information 
(such as sparse representation error) of the signals.

It has been noted that in most of the existing works on design 
of optimal CS systems, the sensing matrix and sparsifying dictio-
nary are designed independently. From the reconstruction equation 
y = As, one can see that the performance of a CS system is de-
termined by the properties of the equivalent dictionary A = ��

and hence can be enhanced by designing the two � and � jointly 
in one and the same framework. As far as we know, there have 
been a few works reported on this topic. The very first piece of 
work closely related to this topic was perhaps given by Duarte-
Cavajalino et al. [13]. An improved work was reported in [14], in 
which the same framework as that in [13] is used but both sens-
ing matrix and dictionary are updated using analytical solutions. 
However, both approaches in [13] and [14] alternatively update the 
sensing matrix and the dictionary with different measures rather 
than under the same criterion.

The main problem to be considered in this paper is to investi-
gate how to learn both sensing matrix and dictionary jointly in one 
and the same framework and measure (a.k.a. criterion) using a set 
of training samples. Our contributions in this paper are highlighted 
in next subsection.

1.3. Contributions

• Based on the maximum likelihood estimation (MLE) princi-
ple [34], an alternative signal reconstruction scheme, called 
pre-conditioned signal recovery (PSR), is derived and a new 
measure is proposed, which allows us to optimize the sensing 
matrix and the dictionary simultaneously. Unlike [13] and [14], 
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