0 N O s W N =

D OO OO O U U oo o g MDD DD DB DB DB DB DB W W W WOOOWWWWWNNDNDDNDMNDNDNDDNDNDND =S =SS dd
O A WN =4 O © 0N O O & WN = O © 0N O O B WOWN - O © 0N OO & ON = O © 0N OO B WN -+ O © 0N O WM = O ©

JID:YDSPR AID:2224 /FLA

[m5G; v1.224; Prn:8/11/2017; 13:18] P.1 (1-10)

Digital Signal Processing eee (eeee) eee—see

www.elsevier.com/locate/dsp

Contents lists available at ScienceDirect

Digital Signal Processing

Digital
Signal _
Processing

On joint optimization of sensing matrix and sparsifying dictionary for

robust compressed sensing systems

Gang Li?, Zhihui Zhu"*, Xinming Wu ¢, Beiping Hou?

a School of Automation & Electrical Engineering, Zhejiang University of Science & Technology, Hangzhou, 310023, Zhejiang, PR China
b pepartment of Electrical Engineering, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA

€ University of Texas at Austin, Bureau of Economic Geology, Austin, TX, 78713-8924, USA

ARTICLE INFO ABSTRACT

Article history:
Available online xxxx

Keywords:

Maximum likelihood estimation

Compressed sensing

Sparse representation error

Signal and image compression
errors.

This paper deals with joint design of sensing matrix and sparsifying dictionary for compressed sensing
(CS) systems. Based on the maximum likelihood estimation (MLE) principle, a preconditioned signal
recovery (PSR) scheme and a novel measure are proposed. Such a measure allows us to optimize the
sensing matrix and dictionary jointly. An alternating minimization-based iterative algorithm is derived for
solving the corresponding optimal design problem. Simulation and experiments, carried with synthetic
data and real image signals, show that the PSR scheme and the CS system, obtained using the proposed
approaches, outperform the prevailing ones in terms of reducing the effect of sparse representation
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1. Introduction

Compressed sensing (CS) has attracted a lot of attention in
the signal processing community since its appearance in the early
2000s [1-3]. Mathematically, CS is a framework that involves com-
pressing a signal vector x € ®N*1 into a low dimensional one
y e A1 (M « N) via

y=dx (1)

and reconstructing the original signal x from the measurement y.
The matrix ® € RM*N is called a sensing/projection matrix.

Let x € W¥*1 be modeled as a linear combination of a set of
vectors {y}-,!:

L

x=_s(hyn £ s )

=1

where the matrix W e #V*L is usually called a dictionary and is
said over-complete if N < L and s is the coefficient vector. We say x

* This work was supported by the Grants of NSFC 61273195, 61304124, and
61473262.

* Corresponding author.
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! Throughout this paper, MATLAB notations are adopted: Q(m,:), Q(:,k) and
Q (i, j) denote the mth row, kth column, and (i, j)th entry of the matrix Q; q(n)
denotes the nth entry of the vector q.
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is k-sparse (in W) if ||s|o < «, where ||s||o denotes the number of
non-zero elements in s.

A CS system refers to equations (1)-(2), characterized with the
sensing matrix ® and dictionary W. Its ultimate goal is to recon-
struct the original signal x from y that senses the former via (1).
Traditionally, the reconstructed signal is given by X = W$ with §
being a proper solution of the following problem

y=As (3)

where A £ W is called the equivalent dictionary.

As M < N, equation (3) has an infinite number of solutions. To
make the above equation have a unique solution, extra properties
of this linear system have to be enforced and the concept of spark
is one of such properties. The spark of a matrix A € tM*L, de-
noted as spark(A), is defined as the smallest number of columns
in A that are linearly dependent. It was shown in [4] that as long
as spark(A) > 2k, any k-sparse signal xg = Wsg can be exactly re-
covered from its measurement y = ®xg by solving

so=argmin |sllp s.t. y=As (4)
N

or

so=argmin [y — As|3 st [sllo <k (5)

where |||, denotes the I,-norm of vector v € MN*1 and is defined
as
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Dictionary design is to find a dictionary to represent a class
2 py1/p
Ivilp = (Zlv(n)l )P p=1 (6) of signals for a given sparsity level k. Typical examples include

n=1

In general, both of the problems (4) and (5) are NP-hard. The prob-
lem defined in (5) is practically addressed using greedy algorithms
such as the orthogonal matching pursuit (OMP) technique [5-9].
Furthermore, it can be shown [4] that under some conditions, (4)
is equivalent to the following l;-based minimization

Sp = arg msin sl st y=As (7)

which can be solved efficiently using algorithms such as basis pur-
suit (BP) [3] and the [; /I;-based optimization techniques [10].

1.1. Related works

Designing optimal CS systems usually refers to determine a pair
(W, @) such that the corresponding CS system yields a desired per-
formance in terms of signal compression and signal recovery. Such
performance depends strongly on the properties of W and ®.

As mentioned above, the spark of the equivalent dictionary is
one of the properties for exact reconstruction. The restricted isom-
etry property (RIP) [2], [3] is another one. A matrix A is said
(k, 8)-RIP if there exists a § with 0 <8 < 1 such that

(1—=8)lsl3 < IAsl3 < (1 +)sl3

holds for all s satisfying ||s|lo < . It has been shown that when
A=®V is (2k, 8)-RIP, a k-sparse x in W can be reconstructed ex-
actly from its low dimensional measurement [2-4]. Furthermore,
as shown in [4], [5], any k-sparse coefficient vector s can be ex-
actly obtained from y = As as long as

k<t L (8)
20w

where w(A) is the mutual coherence of matrix A and is defined as

o (SACDACD> 1y 8
1=ij<L |AC,DI20AC, DII2
where < .,. > and rj; denote the inner product and the cross-
correlation factor between two vectors, respectively. Roughly
speaking, ((A) measures the maximum linear dependency pos-
sibly achieved by any two columns of matrix A.

The relation specified by (8) suggests that the equivalent dictio-
nary with small mutual coherence can enlarge the signal space in
which the coefficient vector s can be achieved exactly. The optimal
sensing matrix design, initialized in [11], deals with how to de-
sign the sensing matrix ¢ with a dictionary W given such that the
CS system yields an accurate reconstruction of signals. This can be
achieved via choosing @ to enhance the mutual coherence prop-
erty of the equivalent dictionary A. A class of approaches under
this framework can be unified as

n(A) £

® 2 argmin||H — AT A|3
gCD,H” i

st. He Sy, A=oV (10)

where ||.||r denotes the Frobenius norm and Sy is a non-empty
set of target Gram matrices of desired mutual coherence with
H(k,k) =1,V k. See [12-22].

In (10), the target Gram H has its diagonal elements all equal to
one and the Gram A7 A is directly related to the coherence behav-
ior of A if and only if |A(;,D)]l2 =1, V L In order to make the cost
function have the designated physical meaning, (10) was studied
recently in [23] with an additional constraint: [|AC, D=1, VI,
and the corresponding problem was attacked using a gradient de-
scent algorithm.

the Fourier matrix for frequency-sparse signals, a multiband modu-
lated Discrete Prolate Spheroidal Sequences (DPSS’s) dictionary for
sampled multiband signals [24,25], and learning a sparsifying dic-
tionary from a training dataset. Let X € ®N>*J with X(:, j) = x; be

the data matrix formed by a collection of training samples {2(,]-}]1:1
from a certain class of signals. The traditional dictionary learning

is to solve the following problem
(W, S} =argmin||X — WS

st. IS Dllo=k, Vj

W, DI2=1, VI (11)

where the normalization constraint on dictionary is mainly for
avoiding degenerate solutions as the solutions to minimizing || X —
lIISH% w.rit. W and S are not unique. A practical approach used to
attack such a highly non-convex problem is based on the alternat-
ing minimization strategy [26-33].

1.2. Problems to be investigated

It should be pointed out that the sensing matrices obtained us-
ing the classical approaches (10) do yield a very good performance
when the signals to be compressed are exactly sparse in a dictio-
nary W. A more practical signal model is

x=Ws+e (12)

where e is the representation error, which is practically not nil
in general. In that case, the CS system using the sensing matrix
designed based on (10) usually fails in resulting an accurate recon-
struction. See Section 4.2.2 and also [35,36] for a typical example
in image compression. The main reason for this phenomenon is
due to the fact that the classical approaches (10) to optimal sens-
ing matrix design do not take into account of priori information
(such as sparse representation error) of the signals.

It has been noted that in most of the existing works on design
of optimal CS systems, the sensing matrix and sparsifying dictio-
nary are designed independently. From the reconstruction equation
y = As, one can see that the performance of a CS system is de-
termined by the properties of the equivalent dictionary A = ®W
and hence can be enhanced by designing the two ® and W jointly
in one and the same framework. As far as we know, there have
been a few works reported on this topic. The very first piece of
work closely related to this topic was perhaps given by Duarte-
Cavajalino et al. [13]. An improved work was reported in [14], in
which the same framework as that in [13] is used but both sens-
ing matrix and dictionary are updated using analytical solutions.
However, both approaches in [13] and [14] alternatively update the
sensing matrix and the dictionary with different measures rather
than under the same criterion.

The main problem to be considered in this paper is to investi-
gate how to learn both sensing matrix and dictionary jointly in one
and the same framework and measure (a.k.a. criterion) using a set
of training samples. Our contributions in this paper are highlighted
in next subsection.

1.3. Contributions

e Based on the maximum likelihood estimation (MLE) princi-
ple [34], an alternative signal reconstruction scheme, called
pre-conditioned signal recovery (PSR), is derived and a new
measure is proposed, which allows us to optimize the sensing
matrix and the dictionary simultaneously. Unlike [13] and [14],

Process. (2017), https://doi.org/10.1016/j.dsp.2017.10.023

Please cite this article in press as: G. Li et al., On joint optimization of sensing matrix and sparsifying dictionary for robust compressed sensing systems, Digit. Signal

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132



Download English Version:

https://daneshyari.com/en/article/6951870

Download Persian Version:

https://daneshyari.com/article/6951870

Daneshyari.com


https://daneshyari.com/en/article/6951870
https://daneshyari.com/article/6951870
https://daneshyari.com

