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In this paper we consider almost cyclostationary processes with jitter effect. We propose a bootstrap 
approach based on the Moving Block Bootstrap method to construct pointwise and simultaneous 
confidence intervals for the Fourier coefficients of the autocovariance function of such processes. In 
the simulation study we showed how our results can be used to detect the significant frequencies of 
the autocovariance function. We compared the behavior of our approach for jitter effects caused by 
perturbations from two distributions, namely uniform and truncated normal. Moreover, we present a 
real data application of our methodology.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we consider almost cyclostationary (ACS) pro-
cesses. They are generalizations of cyclostationary (CS) processes. 
A process X(t) with finite second moments is called CS with pe-
riod d, if it has periodic mean and covariance function, i.e.,

E
(

X(t + d)
) = E

(
X(t)

)
and

Cov
(

X(t), X(s)
) = Cov

(
X(t + d), X(s + d)

)
.

For more details we refer the reader to [1].
Moreover, a process X(t) with finite second moments is called 

ACS, if its mean and autocovariance functions are almost periodic. 
Let us recall that almost periodic functions were introduced by 
Besicovitch in [2]. A function f :R →R is called almost periodic if 
for every ε > 0 there exists a number lε such that for any inter-
val of length greater than lε , there is a number pε in this interval 
such that

sup
t∈R

∣∣ f (t + pε) − f (t)
∣∣ < ε. (1)

Equivalently, the almost periodic functions can be defined as the 
uniform limits of trigonometric polynomials (see [2]). For more in-
formation on ACS processes we refer the reader to [3].

To analyze ACS processes, Fourier analysis is often applied. 
Fourier expansions of the mean and the autocovariance function 

E-mail address: aedudek@agh.edu.pl (A.E. Dudek).

are used to detect significant frequencies. Although, results estab-
lishing the estimators of the Fourier coefficients and their proper-
ties are well known (see [4]), in practical applications one needs 
also a method to obtain the range of possible values of the con-
sidered parameters. Unfortunately, the asymptotic confidence in-
tervals cannot be constructed because the asymptotic variances of 
the estimators depend on the unknown parameters. Thus, to com-
pute confidence intervals resampling methods are used. They allow 
us to approximate the distribution of the statistics of interest.

One of the most popular resampling techniques is the bootstrap 
method. It was introduced by Efron in [5]. The method was initially 
designed for independent and identically distributed data, but in 
the late 1980s and beginning of the 1990s, there appeared modi-
fications dedicated for stationary time series (see [6] and [7]). Fi-
nally, techniques for nonstationary processes have been developed 
in the last 10 years. Methods dedicated to stationary or nonstation-
ary time series are designed to preserve the dependence structure 
contained in the data. The idea is to randomly sample blocks of 
observations and hence to keep inside of each block the depen-
dence structure contained in the original data. Currently there exist 
three block bootstrap methods that can be applied to CS/ACS pro-
cesses. These are the Moving Block Bootstrap (MBB) introduced 
independently in [6] and [7], the Generalized Seasonal Block Boot-
strap (GSBB) proposed in [8], and the Generalized Seasonal Tapered 
Block Bootstrap (GSTBB) proposed in [9]. All can be used for CS 
processes, but since the GSBB and the GSTBB require knowledge of 
the period length, they cannot be applied to the ACS case. The first 
bootstrap consistency result for CS/ACS processes was obtained in 
2007 by Synowiecki in [10]. The author showed validity of the MBB 
for the overall mean of the ACS time series. Dudek et al. proved the 
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GSBB consistency for the overall mean and the seasonal means in 
[8]. The corresponding results for the GSTBB can be found in [9]. 
The applicability of the modified MBB for the Fourier coefficient of 
the mean and the autocovariance functions of ACS time series was 
proved in [11]. Fourier coefficient of the mean and the autocovari-
ance functions of CS time series were considered in [12] (GSBB) 
and [9] (GSTBB). Moreover, Dehay and Dudek showed the MBB va-
lidity for Fourier coefficient of the mean and the autocovariance 
functions of ACS continues time process that is not fully observed 
(see [13] and [14]).

In the following we extend applicability of the bootstrap 
method to the ACS processes, which are observed in instants that 
are randomly disturbed. This effect is called jitter. It appears in 
many signal analysis problems [15–17], e.g., receiver design in 
telecommunication, audio applications, optical encoders, etc. Jitters 
in clock signals are typically caused by noise or other disturbances 
in the system. Contributing factors include thermal noise, power 
supply variations, loading conditions, device noise, and interfer-
ence coupled from nearby circuits.

When acquiring a signal, the jitter of the sampling clock can be 
voluntary or involuntary. For example, in the case of compressed 
sensing it is essential to achieve a random signal acquisition. In 
practice this operation can be performed by adding a random jitter 
on the clock signal. In other applications, the jitter can be undergo-
ing. This is the case for the angular acquisitions of vibratory signals 
issued from rotating machinery. In this situation, angular sampling 
is sensitive to hardware imperfections (optical encoder precision, 
electrical perturbation, etc.) (see [18]). The angular sampled sig-
nal quantification step or sampling frequency determination is not 
identical to the time domain [19,20]. Angular sampling is also not 
adapted to study time domain signals like impulse response. Some 
of the imperfections can be viewed as non-uniform sampling or 
random jitter. In these voluntary or involuntary circumstances, it 
appears appropriate to develop CS signal analysis tools sampled in 
the presence of jitter.

The paper is organized as follows. In Section 2 the problem is 
formulated and the considered assumptions are presented. In addi-
tion, the estimators of the Fourier coefficients are introduced and 
their asymptotic properties are discussed. Section 3 is dedicated to 
the bootstrap method. The MBB approach adapted to our problem 
is presented and its consistency for the Fourier coefficients of the 
autocovariance function is shown. Finally, the construction of the 
bootstrap pointwise and the simultaneous confidence intervals are 
provided. Section 4 is devoted to the alternative bootstrap tech-
nique that can be used in the considered problem. In Section 5, 
a simulation study is presented in which the performance of the 
proposed bootstrap method is verified. Finally, in Section 6 the real 
data vibratory gear vibration signal is analyzed and the obtained 
results are discussed in Section 7.

2. Problem formulation

Let X = {X(t), t ∈ R} be a zero-mean real-valued process that 
is uniformly almost cyclostationary (UACS), i.e., for any s ∈ R

E(X2(s)) < ∞ and autocovariance function B(t, τ ) = Cov(Xt , Xt+τ )

= E(X(t)X(t + τ )) is almost periodic in t uniformly in τ .
In the following, we use notation introduced in [21].
The process X(t) is not observed continuously but only in in-

stants tk = kh + Uk, h > 0. Hence one observes the discrete time 
process Xk = {X(kh + Uk), k ∈ Z}. Random variables Uk are inde-
pendent and identically distributed (iid) and are independent of X . 
They can be considered as random errors. In fact we assume that 
each instant in which the process is observed is disturbed. In the 
sequel we assume that h > 0 is fixed and small enough to avoid 
aliasing. In [18] a similar model was considered with Uk being iid 
random variables from the standard normal distribution.

In this paper we focus on the Fourier analysis of X . Generally, 
for a fully observed process X , the Fourier coefficients of the auto-
covariance function are of the form

a(λ, τ ) = lim
T →∞

1

T

T∫
0

E
(

X(t)X(t + τ )
)

exp(−iλs)ds (2)

For a continuous time observation of a UACS process X the esti-
mator

âT (λ, τ ) = 1

T

T∫
0

X(t)X(t + τ )exp(−iλt)dt (3)

is consistent and asymptotically normal (see, e.g., [4,22]).
To estimate the Fourier coefficients of the autocovariance func-

tion of X in our case, we need to use some approximation. The 
problem is caused by the fact that we need to know values 
X(t)X(t + τ ). Since τ is not always a multiple of h, we approxi-
mate τ by the nearest multiple of h. Let kτ be the nearest integer 
to τ/h. We have

τ

h
− 1

2
< kτ <

τ

h
+ 1

2
.

Finally, Uk,τ = Uk+kτ + kτ h − τ is a time perturbation for the time 
moment kh + τ .

We observe a sample {X(kh + Uk) : 1 ≤ k ≤ n}. The estimator of 
a(λ, τ ) is defined as follows

ã(λ, τ ) = 1

n

n∑
k=1

b̃k(λ, τ ), (4)

where

b̃k(λ, τ ) = X(kh + Uk)X
(
(k + kτ )h + Uk+kτ

)
exp(−iλkh) (5)

and 0 ≤ k ≤ n and 0 ≤ k + kτ ≤ n. Note that for fixed h > 0, the 
time series ̃bk(λ, τ ) is ACS.

In the next subsection we discuss the assumptions that we used 
to derive our results.

2.1. Assumptions

In the sequel the following conditions are used:

(i) X is sampled at a constant rate greater than the Nyquist rate 
with time step h > 0 (h is small enough to avoid aliasing);

(ii) the random perturbations Uk are iid from some distribution 
on (−h/2, h/2);

(iii) set � = {λ ∈R : a(λ, τ ) �= 0 for some τ ∈ R} is finite;
(iv) supt E{|X(t)|8+2η} < ∞ for some η > 0;
(v) X has almost periodic fourth moments, i.e. for each t ∈R, 

E{X(t)4} < ∞; the function (t, τ1, τ2, τ3) �→ E{X(t)X(t + τ1)×
X(t + τ2)X(t + τ3)} is almost periodic in t uniformly with 
respect to τ1, τ2, τ3 varying in R;

(vi) X(t) is α-mixing and 
∑∞

k=1 kα
η

η+4
X (k) < ∞.

Condition (ii) prevents permutation of observations caused by the 
jitter effect, i.e., we assume that the instants of the observations 
are perturbed but the order of the observations is unchanged. As-
sumption (iii) denotes that for each τ there is a finite number 
of non-zero coefficients a(λ, τ ) or equivalently a finite number of 
significant frequencies λ. This condition is not necessary but allows 
us to simplify the presentation of the results. Finally, to obtain the 
asymptotic normality of ̃a(λ, τ ), a mixing condition (vi) is needed. 
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