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a b s t r a c t

In this paper, we consider the competitive diffusion game, and study the existence of its pure-strategy
Nash equilibrium when defined over general undirected networks. We first determine the set of pure-
strategy Nash equilibria for two special but well-known classes of networks, namely the lattice and the
hypercube. Characterizing the utility of the players in terms of graphical distances of their initial seed
placements to other nodes in the network, we show that in general networks the decision process on
the existence of pure-strategy Nash equilibrium is an NP-hard problem. Following this, we provide some
necessary conditions for a given profile to be a Nash equilibrium. Furthermore, we study players’ utilities
in the competitive diffusion game over Erdos–Renyi random graphs and show that as the size of the
network grows, the utilities of the players are highly concentrated around their expectation, and are
bounded below by some threshold based on the parameters of the network. Finally, we obtain a lower
bound for the maximum social welfare of the game with two players, and study sub-modularity of the
players’ utilities.

Published by Elsevier Ltd.

1. Introduction

In recent years, there has been a wide range of studies on the
role of social networks in various disciplinary areas. In particular,
availability of large data from online social networks has drawn
the attention of many researchers to model the behavior of agents
in a social network using the possible interactions among them
(Bharathi, Kempe, & Salek, 2007; Goyal & Kearns, 2012; Jadbabaie,
Lin, & Morse, 2003). One of the widely studied models in social
networks is the diffusion model, where the goal is to propagate
a certain type of product or behavior in a desired way through
the network (Acemoglu, Ozdaglar, & Yildiz, 2011; Goyal & Kearns,
2012; Kempe, Kleinberg, & Tardos, 2003; Young, 2002). Other than
applications in online advertising for companies’ products, such a
model has applications in epidemics and immunization v.s. virus
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spreading (Khanafer & Başar, 2014; Khanafer, Başar & Gharesifard,
2014). One of the challenges in such models has been obtaining
the solution to the best seed placement problem, which has been
extensively studied for different processes (Ackerman, Ben-Zwi, &
Wolfovitz, 2010; Fazli et al., 2012; Gionis, Terzi, & Tsaparas, 2013;
Yildiz, Acemoglu, Ozdaglar, Saberi, & Scaglione, 2011).

In many of the applications in social networks, it is natural
to have more than one party that wants to spread information
on his own products. This imposes a sort of competition among
the providers who are competing for the same set of resources
and their goal is to diffuse information on their own product in a
desiredway across the society. Such a competition can bemodeled
within a game theoretic framework (Başar & Olsder, 1999), and
hence, a natural question one can ask is characterization of the
set of equilibria of such a game. Several papers in the literature
have in fact addressed this question in different settings, with
some representative ones being Bharathi et al. (2007), Brânzei
and Larson (2011), Ghaderi and Srikant (2013), Goyal and Kearns
(2012), Richardson and Domingos (2002) and Singer (2012). Our
goal in this paper is to expand on this literature by addressing the
issue of complexity of ascertaining the existence of Nash equilibria
for some of these models as well as other models introduced here,
as described below.

Due to the complex nature of social events which might
be woven with rational decisions, one can find various models
aimed at capturing the idea of competition over social networks.
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One of the models that describes such a competitive behavior
in networks is known as the competitive diffusion game (Alon,
Feldman, Procaccia, & Tennenholtz, 2010). This model can be seen
as a competition between two ormore parties (types) who initially
select a subset of nodes to invest, and the goal for each party is to
attract as many social entities to his or her own type as possible.
It was shown earlier (Alon et al., 2010) that in general such games
do not admit pure-strategy Nash equilibria. It has been shown in
Takehara, Hachimori, and Shigeno (2012) that such games may
not even have a pure-strategy Nash equilibrium on graphs of
small diameter. In fact, the authors in Takehara et al. (2012) have
shown that for graphs of diameter 2 and under some additional
assumptions on the topology of the network, the diffusion game
admits a general potential function and hence an equilibrium.
However checking these assumptions at the outset for graphs of
diameter at most 2 does not seem to be realistic.

One of the advantages of the diffusion game model is that
it captures the simple fact that being closer to player’s initial
seeds will result in adopting that specific player’s type. Moreover,
the adoption rule which is involved in the diffusion game is
quite simple such that it enables each player to compute its best
response quite fast with respect to others (at least for the case
of single seed placement), given that all the other players have
fixed their actions. On the other hand, as we will see in this paper
what makes the analysis of such games more complicated is the
behavior of nodes which are equally distanced from the players’
seeds. Although there were some recent attempts to characterize
these boundary points and show the existence of pure-strategy
Nash equilibrium of the diffusion game over different types of
networks (Alon et al., 2010; Small & Mason, 2012, 2013), in this
work we will address this issue in a more general form, and show
that finding an equilibrium for diffusion games is an NP-hard
problem over general networks. Therefore, unless P = NP, this
strongly suggests that in general the complexity of analyzing such
a diffusion game is a hard task despite its simple adoption rule.
It requires additional relaxations in the structure of the game in
order to make it more tractable. As one possible approach one
may consider a probabilistic version of the diffusion game using
some techniques fromMarkov chains or optimization of harmonic
influence centrality (Acemoglu, Como, Fagnani, & Ozdaglar, 2013,
2014; Vassio, Fagnani, Frasca, & Ozdaglar, 2014). However, in this
work we take a different approach by considering the diffusion
game over the well-known Erdos–Renyi random graphs which are
commonly used in the literature in order tomodel social networks.

In a related recent earlierwork (Etesami&Başar, 2014),wehave
characterized the utilities of the players based on the graphical
distances of various nodes from the initial seeds. In particular,
we have studied the complexity of deciding on the existence
of a pure-strategy Nash equilibrium. Here, we characterize the
equilibria set for some classes of well-studied networks, and
explore some connections between the set of equilibria and the
underlying network structure. In particular, we provide some
necessary conditions for a given profile of strategies to constitute a
Nash equilibrium. Moreover, we consider the diffusion game over
Erdos–Renyi graphs and prove some concentration results related
to utilities of the players over such networks. Finally we provide a
lower bound for the optimal social welfare of the diffusion game
over general static networks based on their adjacency matrix.

The paper is organized as follows: in Section 2, we describe the
competitive diffusion game and review some of its properties and
existing results regarding this model. In Section 3, we determine
the set of equilibria of two special but well-studied networks,
namely the lattice and the hypercube. In Section 4, we characterize
the utilities of the agents based on the relative locations of the
players’ initial seed placements, and show that, the decision
process on the existence of pure-strategy Nash equilibrium over

general undirected networks is an NP-hard problem. In Section 5,
we provide two necessary conditions based on the network
structure for a given profile to be a Nash equilibrium. In Section 6,
we consider the diffusion game model over random graphs and
show that asymptotically the utility of the players is highly
concentrated around their mean. Furthermore, we provide a
lower bound for the expected utility of the players based on the
parameters of the random graphs. We end the paper with the
concluding remarks of Section 7. Finally, in the Appendix, we
provide some complementary results related to sub-modularity as
well as lower optimal social welfare of the diffusion game over
general fixed networks, which can be used to obtain bounds for
the price of anarchy of diffusion games whenever an equilibrium
exists.
Notations and conventions: For a positive integer n, we let [n] :=

{1, 2, . . . , n}. For a vector v ∈ Rn, we let vi be the ith entry of v.
Similarly, for a matrix P , we let Pij be the ijth entry of P and we
denote the ith row of P by Pi. We denote the transpose of amatrix P
by P ′. Moreover, we let I and 1 be, respectively, the identity matrix
and the column vector of all ones of proper dimensions. Given an
integer k > 0, we denote the set of all k-tuples of integers by Zk.
For any two vectors u, v ∈ Zk, we let u ⊕ v be their sum vector
in mod 2, i.e., (u ⊕ v)i = ui + vi mod2, for all i = 1, . . . , k. We
let G = (V , E) to be an undirected graph with the set of vertices
V and the set of edges E . We denote the degree of a vertex x in
graph G by d(x). Corresponding to G we let AG to be its adjacency
matrix, i.e. AG(i, j) = 1 if and only if (i, j) ∈ E and AG(i, j) = 0,
otherwise. Given a graph G = (V , E) and two vertices x, y ∈ V ,
we define dG(x, y) to be the length of the shortest graphical path
between x and y. Also, for a set of vertices S ⊆ V and a vertex x, we
let dG(x, S) = miny∈S{dG(x, y)}. For a real number a we let ⌈a⌉ to
be the smallest integer greater than or equal to a. We deal in this
paper with only pure-strategy Nash equilibrium, and occasionally
we will drop the qualifier ‘‘pure-strategy’’.

2. Competitive diffusion game

In this section we introduce the competitive diffusion game as
was introduced earlier in Alon et al. (2010) and state some of the
existing results for such a model.

2.1. Game model

Following the formulation in Alon et al. (2010), we consider
here a network G of n nodes and two players (types) A and B.
Initially at time t = 0, each player decides to choose a subset of
nodes in the network and place his own seeds. After that, a discrete
time diffusion process unfolds among uninfected nodes as follows:

• If at some time step t an uninfected node is neighbor to infected
nodes of only one type (A or B), it will adopt that type at the next
time step t + 1.

• If an uninfected node is connected to nodes of both types at
some time step t , it will change to a gray node at the next time
step t + 1 and does not adopt any type afterward.

This process continues until no new adoption happens. Finally, the
utility of each player will be the total number of infected nodes of
its own type at the end of the process. Moreover, if both players
place their seeds on the same node, that node will change to gray.
We want to emphasize the fact that when a node changes to gray,
not only will it not adopt any type at the next time step, but also
may block the streams of diffusion to other uninfected nodes. We
will see later that the existence of gray nodes in the evolution of
the process canmake any prediction process about the outcome of
the diffusion process much more complicated.
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