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a b s t r a c t

We present a hierarchical offline coordination algorithm for charging of Plug-in Electric Vehicles (PEVs),
inwhich PEVs aim to optimally charge their batteries, subject to usage constraints along the day.With this
algorithm, each PEV adjusts its charging strategy according to the price information, which is provided
by an aggregator, while usage schedule constraints are respected at every iteration. A non-anonymous
version of the algorithm is able to operate under communication failures. Both versions of the algorithm
are proven to converge to the set of optimal solutions of the charging problem. This solution is optimal in
the sense that it minimizes the cost of the consumed energy by both PEV and non-PEV loads. The solution
has a valley-filling profile, since it leads to a configuration where PEVs aim to charge at low demand
hours, minimizing, if possible, load peaks that are known to degrade the performance of power systems.
In order to show convergence, we present an invariance result for difference inclusions, which works
under a set of assumptions where LaSalle invariance principle does not apply. The algorithm performance
is demonstrated throughout simulations.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Plug-in Electric Vehicles are being proposed as an important
element in flexible load control that can both help alleviate
environmental transportation costs and our dependency on
petroleum energy sources. However, a large penetration of PEVs
may also negatively affect the operation of the power system, by
creating new demand peaks and system overload (Farmer, Hines,
Dowds, & Blumsack, 2010). These phenomena incur into additional
stress on generation, transmission and distribution systems, which
translates into increased costs for users and electric generation
companies. In order to lower the burden PEVs create on power
systems, and at the same time decrease end-user costs, new
algorithmic approaches on PEV charging are being designed with
the goal of achieving peak-shaving solutions. This manuscript
contributes in this regard by proposing a novel algorithm that

✩ This work has been supported in part by NSF CAREER CMMI Award 0643679
and NSF ECCS Award 1232271. Thematerial in this paper was partially presented at
the 51st Annual Allerton Conference on Communication, Control, and Computing,
October 2–4, 2013, Monticello, IL, USA. This paper was recommended for
publication in revised form by Associate Editor Zhihua Qu under the direction of
Editor Andrew R. Teel.

E-mail addresses: aicortes@ucsd.edu, andrescortes4500@gmail.com (A. Cortés),
soniamd@ucsd.edu (S. Martínez).

allocates PEV load at low-demand hours, while accounting for
planned PEV scheduling constraints.

Diverse control architectures have been proposed to minimize
power demand and to avoid the rise of new load peaks: centralized,
distributed, and hierarchical. In a fully distributed setting, the
network is solely comprised of PEVs, which exchange information
with a subset of neighboring PEVs and make decisions based on
that information. In a hierarchical architecture (also referred to
as ‘‘decentralized’’ in the literature), agents engage in a similar
process, but employing a special tree communication structure and
minimal communication interaction. According to this distinction,
we find the following related works in the literature.

The paper (Mets, Verschueren, Haerick, Develder, & De Turck,
2010) formulates an optimization problem which is solved in
a centralized manner to come up with a valley-filling solution.
In Masoum, Deilami, Moses, Masoum, and Abu-Siada (2011), a
centralized PEV charging coordination strategy is proposed in
order to shave demand peaks as well as minimize distribution
losses. A supervisor controls the battery charging policies for all the
PEVs in Caramanis and Foster (2009), with the aim of minimizing
costs and regulating voltage. In Ardakanian, Rosenberg, andKeshav
(2013), a distributed online approach is followed, in order to decide
charging rates for each time. To this end, each electric vehicle uses
measures of the instantaneous congestion of those nodes of the
grid, by which power flows towards it. The authors of Gharesifard,
Basar, and Dominguez-Garcia (2013) introduce a pricing-based
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two-layer control algorithm for charging/discharging of PEVs. The
algorithm is distributed, exploiting consensus-algorithm ideas. The
characterization of the solutions and performance analysis are
made via game theory and nonlinear analysis. Neither of the above
works considers constraints based on usage schedule.

In Ahn, Li, and Peng (2011), optimal charging trajectories are
computed using linear programming. The authors propose two
hierarchical algorithms to solve the problem. The first requires
information about a centralized solution, particularly about the
cost function gradient, while the second one assumes that each
PEV computes a valley-filling solution based on the average
charge requirements from all PEVs. No guarantee of optimality
is provided. The work Zhongjing, Callaway, and Hiskens (2011)
introduces an algorithm that computes optimal charging strategies
for a large population of PEVs. A bargain is performed between an
energy coordinator and the PEVs, which leads to a valley-filling
solution that minimizes the overall energy price. In this work, all
PEVs are considered to have the same charging schedule. The paper
Gan, Topcu, and Low (2013), generalizes the setting of the previous
work. The bargaining idea is similar to the one in Zhongjing
et al. (2011), but it is assumed that PEVs have constraints on the
maximal amount of energy that can be charged into their batteries
at each time, as well as deadlines for complete charge. The result
in Gan et al. (2013) is also extended to an asynchronous iteration,
under mild connectivity assumptions and for non-anonymous
interactions between the utility and PEVs. The works Gan et al.
(2013), Zhongjing et al. (2011) present algorithms that are based
on the solution of local convex optimization problems in a repeated
way. Although convex optimization problems can be efficiently
solved, each iteration involves several computationally expensive
steps (e.g., solution of linear equations systems) which must be
carried out sequentially. These algorithms have been proven to
exhibit asymptotic convergence to the optimal solution of the
problem.

The contributions of this work are twofold. We present a novel
hierarchical approach, the Price Leveling algorithm, based on local
interaction rules that meet usage schedule constraints. In this way,
our algorithm is represented by a nonlinear difference equation,
which only involves sums, and products. This improves on the
required computational effort as compared to Gan et al. (2013)
and Zhongjing et al. (2011), in which at each iteration a convex
optimization problem must be solved by each PEV. This presents
two main advantages. First, algorithms with lower computational
requirements reduce errors in online implementations. Secondly,
they allow for the use of cheaper computational devices in offline
implementations, which is of concern to both grid operators and
users.

The usage constraints we consider are described by energy
requirements that must be achieved by each PEV before certain
times of the day, in order to meet user needs. In addition,
this algorithm also respects the bounds on the charging rate
for each PEV battery. We further present a Non-Anonymous
Price Leveling algorithm, a version of our algorithm in a non-
anonymous interaction setting under communication failures. In
order to analyze our algorithms, we present an invariance result
for discrete-time set-valued systems, which is more general than
the LaSalle invariance principle for difference inclusions. This
result is instrumental for our proof of convergence to an optimal
generalized valley-filling solution. Simulations demonstrate the
validity of the theoretical results, and illustrate how the algorithm
would perform under anonymous time-varying interactions. A
preliminary version of this work was presented in Cortés and
Martínez (2013), where the Price Leveling algorithm did not
account for usage constraints or time-varying interactions. A
weaker version of the theoretical results was also presented in
Cortés and Martínez (2013) without proof.

This paper is organized as follows: in Section 2, we formulate
the PEV charging problem under scheduling constraints, as an
optimization problem, and we also present some results to
characterize the optimal solution of this problem. In Section 3,
we introduce the Price Leveling algorithm, and present some
characterization of its behavior, aswell as the convergence analysis
towards the set of optimal solutions of the PEV charging problem.
In Section 4, we present the Non-Anonymous Price Leveling
algorithm to work in a scenario with communication failures.
In Section 5, we show simulation results for a specific scenario
with communication failures. Conclusions and future directions
are presented in Section 6.

Notation: Let A, B be subsets of X . Define A \ B = {a ∈ X | a ∈

A, a ∉ B}. If the set A is finite, define |A| as the number of elements
of A. Let z be a vector in Rq, q ∈ N. Then ∥z∥ denotes the euclidean
norm of z. For r > 0, define Br(z) = {y ∈ Rq

| ∥z − y∥ ≤ r}. Let S
be a set in Rq. Then, S +Br(0) = {y ∈ Rq

| ∃z ∈ S s.t. ∥z − y∥ ≤ r}.
For a function V : Rq

→ Rs, and the set-valued map F : Rm ⇒ Rq,
define V ◦ F : Rm ⇒ Rs, such that V ◦ F(z) = {y ∈ Rs

| ∃ξ ∈

F(z) s.t. W (ξ) = y}. For a function f : R → R, let us denote the
derivative of f by f ′.

Next, we introduce some symbols that will be used throughout
the document:

T : Length of the optimization horizon
τ = {1, . . . , T }: Optimization horizon (set of slots)
I = {1, . . . ,N}: Set of PEVs
Wi ⊂ τ ∪ {T + 1}: Set of ‘in-use’ time slots for agent i ∈ I
Zi ⊂ τ : Set of ‘charging-available’ time slots
{Zℓi }

mi
ℓ=1: Partition of Zi

{W ℓ
i }

mi
ℓ=0: Partition ofWi

Zn
i =

n
ℓ=1 Z

ℓ
i : Cumulative elements of the partition {Zℓi }

mi
ℓ=1

Wn
i =

n
ℓ=0 W

ℓ
i : Cumulative elements of the partition {W ℓ

i }
mi
ℓ=0

n(i, t): Element in the charging available partition for agent (or
PEV) i, {Zℓi }

mi
ℓ=1, containing t ∈ Zi

mi: Number of elements in the partition of Zi
d = NT


i∈I mi: Dimension of the algorithm state

Fi: Feasible charging set for PEV i
F : Feasible charging set for all PEV
F : Set of admissible states for the Price Leveling algorithm
Dt : Non-PEV demand at time slot t
ui,t : Charging rate at time slot t for PEV i
ui: Charging profile for PEV i
u: Charging profile for all PEVs
wi,t : Energy-usage requirement for time slot t for PEV i
xt : PEV aggregate demand at time slot t
Lt = Dt + xt : Overall demand at time slot t
ϑi,t : Battery state of the ith PEV at time slot t
ϑi,tn : Battery state at time slot tn = max Zn

i for n ∈ {1, . . . ,mi},
and PEV i
αi: Efficiency of the ith battery charger
βi: Capacity of the ith battery
pkt : Energy price at time slot t , iteration k computed by the
aggregator
{Υl}

m+1
l=1 : Partition of τ associated to the optimal load profile

y: State of the Price Leveling algorithm.
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