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This paper considers the robust identification for dual-rate input nonlinear equation-error systems with 
outliers and random time delay. To suppress the negative influence caused by the outliers to the accuracy 
of identification, the distribution of the noise is represented by a t-distribution rather than a Gaussian 
distribution. A random time delay is considered in the dual-rate input nonlinear systems. By treating 
the unknown time delay as the latent variable, the expectation maximization algorithm is derived for 
identifying the systems. Two numerical simulation examples demonstrate that the proposed algorithm 
can generate accurate identification results when the measurements are contaminated by the outliers.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The identification for nonlinear systems has received a lot of 
attention [1–3]. Typical nonlinear models include Hammerstein 
models, Wiener models, Hammerstein–Wiener models and so on. 
Hammerstein model which has a static nonlinear block followed by 
a linear dynamic subsystem has been widely used to describe the 
system with the input nonlinearity [4]. The structure of the Ham-
merstein model is simple and flexible. The memoryless nonlinear 
block can be the continuous nonlinear function or the piecewise 
linear function. The dynamic subsystem may be the state space 
representation, the equation-error model or the transfer functions 
and so on [5]. The parameter estimation for the Hammerstein 
model with white noise has received great attention. However, few 
work has been focused on the robust identification for the Ham-
merstein model. Disturbances universally exist in industrial pro-
cesses [7]. Especially in the areas of control system and signal pro-
cessing [6], the observed outputs always contain disturbances from 
process environments [8,9]. The disturbances could be white noise 
or colored noise [10,11]. The noise may contain certain unexpected 
or uncertain large magnitude points, which are called outliers. The 
outliers are unavoidable in practical processes for some uncertainty 
elements, such as the measurement errors, signal interferences or 
disturbances from outside environments [12].
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Using the measurements which are contaminated by outliers 
for system identification will bring negative influence to the accu-
racy of the parameter estimation [13,14]. Some screening methods 
have been studied to deal with the outliers. The main idea of 
this approach is to discard the unexpected points by trimming 
the measurement dataset [15]. But the simple removing of data 
will lead to biased estimation [16]. Traditionally, the Gaussian dis-
tribution is widely used to fit the random noise in the model-
ing process. However, one major shortcoming of such a Gaussian 
model is its sensitivity to outliers [17]. Another way to deal with 
the outliers or gross errors is to use the so-called contaminated 
Gaussian distribution. It is a two-component combined Gaussian 
distribution, the normal one representing regular noise with small 
variances and the non-normal one representing outliers with large 
variances [18]. For example, Jin and Huang modeled the noise with 
a contaminated Gaussian distribution and used the expectation 
maximization (EM) algorithm to identify the piecewise/switching 
autoregressive exogenous (ARX) process [19].

A general approach to cope with the potential outliers is to use 
t-distribution to describe the process contaminated by outliers. The 
t-distribution is employed since it has longer tails than a Gaussian 
distribution owing to its adjustable degree of freedom [20]. For 
example, Chamroukhi proposed a robust mixture of experts mod-
eling using the t-distribution to deal with groups of observations 
with heavy tails or atypical observations [21]. Sammaknejad et al. 
proposed a robust approach to process monitoring and diagnosis 
based on a time-varying hidden Markov model [22]. In the dis-
cussed systems, the multivariate t-distributions are used to model 
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observations around different process operating modes with differ-
ent likelihoods of outliers.

Because of the limitation of the measured sensors or the anal-
ysis of quality variables, the measured input–output data are im-
possibly always be sampled at the same rate [23]. For example, 
the pressure and temperature can be sampled at a fast rate by 
the sensor while the analysis of the components for variables can 
only be sampled at a slow rate. In process industries, the dual-rate 
sampled-data system and the multirate sampled-data system is 
very common [24–26]. Mo et al. presented a two-stage method to 
identify the dual-rate systems with fast input and slow output and 
applied the proposed method to an industrial distillation column 
to develop a composition observer [27]. Li et al. proposed a poly-
nomial domain method to identify a fast single-rate linear model 
based on dual-rate input–output data and applied the proposed 
identification and control algorithm to a Shell Canada’s continuous 
catalytic reforming reactor to improve the octane quality control 
[28].

Time delay is another issue that must be considered in dynamic 
systems [29]. Known or unknown delays in the process of signal 
processing and system identification have been discussed [30,31]. 
In these work, the time delay is considered as a fixed value, that 
means in every different sampling point, no matter it is known 
or unknown, the delay is assumed to remain the same. However, 
time delay may be time-varying [32,33] or randomly distributed 
[34]. For example, Zhao et al. derived a variational Bayesian ap-
proach to identify ARX models with time-varying time delays [35]. 
They considered the time-varying time delays following a random 
Markov chain and the transition of delay from one value to another 
is determined by a transition probability matrix. Moser et al. pro-
posed an extend gradient-based least-squares algorithm to obtain 
the recursive parameter estimation for exhaust gas oxygen sensors, 
which are characterized by input-dependent time delays and lin-
ear parameters and the time delays are modeled as the functions 
of the input signals [36].

On the basis of the work in [34], this paper considers a robust 
identification problem, which not only means that the measure-
ments are corrupted by larger variance of outliers but also means 
that there exists unknown random time delays in the process of 
signal transmission. Different from [34], this paper extends the pa-
rameter estimation problem to the nonlinear Hammerstein model 
with outliers rather than the linear FIR model with Gaussian noise. 
Moreover, for the dual-rate input nonlinear model, Chen et al. de-
rived a recursive least squares (RLS) algorithm to estimate the 
unknown model parameters [37]. However, the RLS algorithm can-
not get the estimates for the random time delay and is sensitive to 
the outliers in the noise. The main contributions of this paper are 
as follows.

• Random time delays rather than a fixed value one are consid-
ered in the process of signal transmission.

• Under the principle of the expectation maximization, modeling 
the disturbance as a t-distribution and treating the variance 
scale in the t-distribution and the unknown time delay as the 
hidden variables, a robust EM algorithm is derived to identify 
the dual-rate input nonlinear equation-error systems.

• By providing the full probability distribution of the time delay 
at each sampling instant, the accurate estimate for the time 
delay is presented.

• By means of the over-parameterization, the parameter prod-
uct terms from the nonlinear block and the linear block are 
partially separated. The unknown parameters of the nonlinear 
block and the linear block are estimated simultaneously.

The remainder of this paper is organized as follows. Section 2
shows the identification model of the dual-rate input nonlinear 

Hammerstein models and gives the probability density function for 
the noise and the measurements. Section 3 provides the detailed 
procedures of deriving the EM algorithm for the input nonlinear 
dual-rate systems. Two simulation examples are provided to show 
the effectiveness of the proposed algorithm in Section 4. Finally, 
Section 5 offers some conclusions.

2. System description

In the dual-rate systems, the measured inputs and outputs are 
sampled by two different rates. Assume that the inputs have fast 
rate variables, while the outputs have the characteristic of slow 
change rates. Consider a dual-rate input nonlinear equation-error 
model (i.e., Hammerstein model):

A(z)yti = B(z) f (uti−λi ) + eti , (1)

where {ut, t = 1, 2, . . . , N} is the fast rate input signal and available 
at each sampling time t; {yti , i = 1, 2, . . . , L} is the slow rate out-
put and only available at time instant ti = i ·q (q � 1 is an integer), 
that means the slow rate sampling period is q times that of the fast 
rate (q = N/L); eti is the measurement noise; {λi, i = 1, 2, . . . , L} is 
the unknown random time delay; A(z) and B(z) are polynomials 
of unit backward shift operator (z−1ut = ut−1, z−1 yti = yti−1 ):

A(z) := 1 + a1z−1 + a2z−2 + · · · + ana zna ,

B(z) := b1z−1 + b2z−2 + · · · + bnb znb .

The input nonlinearity is fitted by a polynomial with known basis 
and unknown coefficients:

ūt := f (ut) = c1η1(ut) + c2η2(ut) + · · · + cnc ηnc (ut), (2)

where η j(ut) is the known basis; c j is the unknown coefficient.
Substituting the polynomials A(z) and B(z) and (2) into (1)

gives

yti = −
na∑
j=1

ai yti− j +
nb∑

l=1

bl

nc∑
m=1

cmηm(uti−l−λi ) + eti . (3)

It can be easily find that there are product terms of parameters 
from nonlinear and linear blocks in the right-hand side of (3), it is 
impossible to obtain the unique parameter estimates. Any identi-
fication scheme cannot distinguish (b, c) from (αb, c/α) for some 
nonzero and finite constant α, because any pair (αb, ̄uti /α) would 
produce identical input and output measurements. Therefore, at 
least one parameter in two blocks should be fixed. For the sake of 
simplicity, the over-parameterization method [38] is adopted and 
the first non-zero coefficient in the polynomial ūt is assumed to 
be one, i.e., c1 = 1.

Assume that the orders na , nb and nc are known and yt = 0, 
ut = 0 and et = 0 for t � 0. Let n := na +nbnc . Define the parameter 
vector θ and the information vector φti

as

θ := [a1,a2, . . . ,ana ,b1,b1c2, . . . ,b1cnc ,b2,b2c2, . . . ,b2cnc ,

. . . ,bnb ,bnb c2, . . . ,bnb cnc ]T ∈R
n,

φti
:= [−yti−1 ,−yti−2 , . . . ,−yti−na

, η1(uti−1−λi ),η2(uti−1−λi ),

. . . , ηnc (uti−1−λi ),η1(uti−2−λi ), . . . , ηnc (uti−2−λi ), . . . ,

η1(uti−nb
−λi ), . . . , ηnc (uti−nb

−λi )]T ∈R
n. (4)

Then Equation (3) can be rewritten as

yti = φT
ti
θ + eti . (5)
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