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In this work, the effect of additive noise is studied in order to reduce the mean squared error (MSE) 
between the input parameter and its linear estimator constructed by the nonlinear system output. 
To improve the estimation performance, the optimal additive noise that minimizes the MSE of the 
noise enhanced linear minimum mean squared error (LMMSE) estimator is explored and determined. 
In addition, in the presence of prior information uncertainty, the estimation performances of the noise 
enhanced LMMSE are investigated under a constant constraint of the expected value of the output, and 
the corresponding algorithms are developed to find the optimal additive noise. Finally, two illustrative 
examples are provided to verify the theoretical results. The performance comparisons conducted between 
the LMMSE estimator without noise excitation and the optimal noise modified LMMSE estimator 
demonstrate that noise indeed improves the estimation accuracy under certain conditions.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Noise, viewed as an unwanted signal or a disturbance to the 
system, always coexists with useful signal [1]. The general consen-
sus is that more noise in the system often leads to less channel 
capacity and worse detection or estimation performance. There-
fore, many algorithms and/or filters are developed to separate the 
noise from the useful signal in signal processing. However, a coun-
terintuitive phenomenon that noise actually benefits the nonlinear 
system occurs under certain conditions. The phenomenon of noise 
enhanced system is called stochastic resonance (SR) that was first 
proposed by Benzi in 1981 [2], and since then, it has been re-
ported in a variety of research areas [3–11], for example, magnetic 
systems, optical devices, neural net and electronic circuits, to name 
a few.

From signal detection theory, the output of certain nonlinear 
systems can be improved by adding an additive noise to the in-
put or adjusting the background noise level [12–20]. Based on the 
Neyman–Pearson (NP), Bayesian and Minimax criteria, the noise 
enhanced detection performance is usually investigated. To mea-
sure the improvement obtained in signal detection, several perfor-
mance indexes are employed, for example, output signal-to-noise 
ratio (SNR) [3,4], detection probability [14–17], or Bayes risk [18,
19], mutual information (MI) [20].
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In addition to the detection, the SR phenomenon has also been 
observed in estimation problems, where the estimator is con-
structed utilizing the output of some nonlinear systems [21–25]. 
The performance of the noise enhanced parameter estimation is 
usually evaluated in terms of Cramér–Rao lower bound (CRLB) [21,
22] or mean-squared error (MSE). For example, a noise enhanced 
parameter estimation problem based on quantized observations is 
studied in [22], which aims to minimize the CRLB for estimating 
the unknown parameter via adding an additive noise to the obser-
vations before the quantization. For a given value of the parameter, 
the optimal additive noise is proven to be a constant vector. In 
[23], under the unbiased constraint, a general parameter estima-
tion problem utilizing the additive noise is investigated to mini-
mize the MSE for a deterministic estimator. The conclusion is that 
in this case the optimal noise is selected as a randomization of no 
more than two constant vectors. Furthermore, in [24] and [26], the 
authors demonstrated the possibility of improving the performance 
of an optimal Bayesian estimator and a quantizer-array linear es-
timator by operating at higher noise levels. From the discussions 
above, it is seen that the effects of additive noise and background 
noise level on MSE have been investigated in [23] for a fixed sub-
optimal estimator and in [24] for an optimal Bayesian estimator, 
respectively.

However, the influence of the additive noise that minimizes 
MSE for an optimal parameter estimator has not been studied yet. 
The minimum MSE estimator as well as Bayesian estimator is the 
conditional expectation of the parameter [26], whereas it is hard 
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Fig. 1. The general noise modified estimation system.

to calculate or may not even be known in real applications since it 
takes averages against the conditional probability distribution func-
tion (pdf) of the parameter. Therefore, the optimal linear estimator 
is usually considered to avoid this pitfall.

In this paper, the additive noise effect is studied to minimize 
the MSE between the input parameter and its optimal noise en-
hanced linear estimator based on the output of nonlinear system. 
This is the first study on the minimization of the noise modified 
linear minimum mean-squared error (LMMSE) via adding additive 
noise to the input of the nonlinear system. To that end, first, a 
general theory framework of noise modified LMMSE estimation for 
a nonlinear system is established. Second, the additive noise that 
minimizes the noise modified LMMSE is explored and proven to be 
a constant vector. Furthermore, considering the fact of unavoidable 
uncertainty in the prior information because it is usually estimated 
by previous experiences in practical applications, the constrained 
noise enhanced LMMSE optimization problems are studied and 
the corresponding algorithms are developed. Finally, the estimation 
performance comparisons of the LMMSE estimators before and af-
ter adding noise are conducted to demonstrate the noise effect. In 
light of this, the main contributions of this paper are summarized 
as follows:

• Formulation of noise enhanced LMMSE estimator for a nonlin-
ear system is presented.

• Derivations of the optimal additive noise that minimizes noise 
modified LMMSE are provided.

• Explorations of the minimum noise modified LMMSE under a 
constant constraint are made.

• Comparisons of the estimation performance before and after 
adding noise are conducted.

The remainder of this paper is organized as follows. In Sec-
tion 2, a general framework of noise enhanced LMMSE is formu-
lated for a nonlinear system. The optimal additive noise corre-
sponding to the minimum LMMSE is explored in Section 3. The 
special case of noise enhanced LMMSE under a constant constraint 
is discussed in Section 4. Finally, numerical examples are presented 
in Section 5 to illustrate the theoretical results and the conclusions 
are made in Section 6.

2. Formulation of noise enhanced estimation problem

This study aims to find a suitable additive noise to improve the 
estimation performance of a nonlinear system. Specifically, we fo-
cus on how to reduce the MSE of linear estimation by adding an 
additive noise to the nonlinear system input. The general noise 
modified estimation system is shown in Fig. 1.

From Fig. 1, x ∈R
N represents an N-dimension input signal and 

it is closely related to the unknown parameter θ , whose pdf is de-
noted by pθ (θ), n denotes an additive noise with pdf pn(n) which 
is independent from the input signal x, and y = T (x + n) is the 
nonlinear system output, where T (·) represents nonlinear transfor-
mation.

In this paper, a linear estimator of the input parameter θ is ob-
tained based on the nonlinear system output y in LMMSE sense. 
The noise modified LMMSE estimator θ̂LMMSE(pn(n)) corresponding 
to the additive noise with pdf pn(n) can be expressed as be-
low [27]:

θ̂LMMSE
(

pn(n)
) = Covθ,y(pn(n))

Vary(pn(n))
· y + E(θ)

− Covθ,y(pn(n))

Vary(pn(n))
Ey

(
pn(n)

)
, (1)

where E(θ) = ∫
RN θ pθ (θ)dθ denotes the expected value of θ , 

Covθ,y(pn(n)) denotes the covariance of the input parameter θ and 
the output y, Ey(pn(n)) and Vary(pn(n)) represent the expected 
value and the variance of the system output y, respectively. Af-
ter simple calculations, the LMMSE between the input parameter 
θ and its noise modified LMMSE estimator corresponding to the 
additive noise with pdf pn(n) is

LMMSE
(

pn(n)
) = Var(θ) − Cov2

θ,y(pn(n))

Vary(pn(n))
(2)

where Var(θ) denotes the variance of the input parameter θ , given 
by

Var(θ) =
∫
RN

(
θ − E(θ)

)2
pθ (θ)dθ. (3)

In order to obtain LMMSE(pn(n)) corresponding to the additive 
noise with pdf pn(n), in (2), the values of Var(θ),
Covθ,y(pn(n)) and Vary(pn(n)) are required. Obviously, Var(θ) is 
fixed for any additive noise since Var(θ) completely depends on 
the pdf of θ . In addition, Covθ,y(pn(n)) is related to both the pdf 
of θ and the conditional pdf of the system output y for a given 
θ , and Vary(pn(n)) only hinges on the pdf of the system output y. 
Since pθ (θ) is assumed to be known, it is necessary to obtain the 
conditional pdf of the system output y for a given θ and the pdf 
of the system output y to find the optimal additive noise pdf that 
minimizes LMMSE(pn(n)).

Suppose that the input signal x is expressed by

x = ϕ(θ) + v, (4)

where ϕ(θ) is any valid function of θ and v denotes the back-
ground noise with pdf pv (v). For a given value of θ , the condi-
tional pdf of the system output y is

py(y|θ) =
∫
RN

∫
RN

δ
(
y − T

(
ϕ(θ) + v + n

))
pv(v)dv pn(n)dn. (5)

By integrating out the pdf of θ , the pdf of y now is expressed as

py(y) =
∫
RN

py(y|θ)pθ (θ)dθ

=
∫
RN

∫
RN

∫
RN

δ
(
y − T

(
ϕ(θ) + v + n

))
pv(v)pθ (θ)dvdθ

× pn(n)dn. (6)

According to the definitions of Covθ,y(pn(n)) and Vary(pn(n)), the 
expected value of the system output y should be calculated first, 
which is obtained by

Ey
(

pn(n)
) =

∫
RN

ypy(y)dy

=
∫
RN

y
∫
RN

py(y|θ)pθ (θ)dθdy

=
∫
RN

∫
RN

∫
RN

∫
RN

yδ
(
y − T

(
ϕ(θ) + v + n

))
pv(v)dv
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