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a b s t r a c t

The paper addresses consensus-based networked estimation of the state of a nonlinear dynamical system.
The focus is on a family of distributed state estimation algorithms which relies on the extended Kalman
filter linearization paradigm. Consensus is exploited in order to fuse the information, both prior and novel,
available in each network node. It is shown that the considered family of distributed Extended Kalman
Filters enjoys local stability properties, under minimal requirements of network connectivity and system
collective observability. A simulation case-study concerning target tracking with a network of nonlinear
(angle and range) position sensors is worked out in order to show the effectiveness of the considered
nonlinear consensus filter.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Consensus is a widely exploited tool for distributing compu-
tations over networks in a scalable way. An especially impor-
tant application of consensus, which has recently received great
attention, is networked state estimation, i.e., distributed estima-
tion of the state of a dynamical system given measurements pro-
vided by a wireless sensor network. The literature on the subject
is quite vast and includes approaches based on consensus Kalman
filtering (Cattivelli & Sayed, 2010; Kamgarpour & Tomlin, 2008;
Kar & Moura, 2011; Li & Jia, 2012; Olfati-Saber, 2007; Wang, Ren,
& Li, 2014; Zhou, Fang, & Hong, 2013), Luenberger-like consen-
sus estimation (Matei & Baras, 2012; Millan, Orihuela, Jurado,
Vivas, & Rubio, 2015; Millan, Orihuela, Vivas, Rubio, Dimarogo-
nas, & Johansson, 2013; Stankovic, Stankovic, & Stipanovic, 2009),
consensus H∞ estimation (Ugrinovskii, 2011, 2013), distributed
particle filtering (Hlinka, Hlawatsch, & Djuric, 2013; Mohammadi
& Asif, 2013), and distributed moving-horizon estimation (Farina,
Ferrari-Trecate, & Scattolini, 2010, 2012). The interested reader
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is referred to the above-cited papers as well so to the references
therein for an overview of the different existing approaches. In the
context of networked state estimation, themain challenge is to de-
sign distributed estimation algorithms that preserve as much as
possible the stability, performance and robustness requirements
of their centralized counterparts.

In this respect, significant advances have been made, in the last
years, in the linear setting by developing distributed state esti-
mation (DSE) algorithms able to guarantee stability under mini-
mal requirements of network connectivity and system collective
observability, i.e. observability from the whole network but not
necessarily from individual sensors. Such algorithms include the
consensus on information (CI) filter of Battistelli and Chisci (2014)
and Battistelli, Chisci, Morrocchi, and Papi (2011) and the infor-
mation weighted consensus filter (ICF) of Kamal, Farrell, and Roy-
Chowdhury (2012, 2013). The CI, in which consensus is carried out
on the posterior information of the network nodes, can be inter-
preted in terms of consensus to the average of the local posteriors
according to the pseudo-metric induced by the Kullback–Leibler
average (Battistelli & Chisci, 2014). The ICF algorithm performs a
consensus with a suitable weighting of the prior state and mea-
surement information so as to ensure convergence to the central-
ized estimate as the number of consensus steps goes to infinity.
Recently in Battistelli, Chisci, Mugnai, Farina, and Graziano (2015),
it was shown that both the CI and the ICF belong to a broader family
of DSE algorithms, and a generalization to a nonlinear setting was
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proposed by exploiting the Extended Kalman Filter (EKF) lineariza-
tion argument. Hereafter, the family of DSE algorithms resulting
from such a generalization will be referred to as Distributed EKFs
(DEKFs).

The present paper provides a contribution by proving that the
family of DSE algorithms of Battistelli et al. (2015) enjoy nice
stability properties also in the more general nonlinear setting,
provided that, similarly to the linear case, suitable connectivity
and collective observability assumptions hold. In the lines of the
classical results on stability of centralized EKF (La Scala, Bitmead,
& James, 1995; Reif, Gunther, Yaz, & Unbehauen, 1999; Reif &
Unbehauen, 1999), the stability analysis is based on the idea of
writing the estimation error dynamics in a suitable way so that
the linearized part is separated from the nonlinear (higher-order)
terms. Then, the stability of the linear part of the estimation
error dynamics can be analyzed via Lyapunov-like methods, and
local stability results can be derived for the overall estimation
error dynamics. As a further contribution, an explicit connection
is established between the boundedness of the filter covariance
matrix and the invertibility of the collective observabilitymapping.

Thanks to this result, the considered family of DEKFs emerges
as an effective tool for the solution of many practically relevant
distributed nonlinear filtering problems like, e.g., distributed
tracking of a moving object given measurements of angle, range
and/or Doppler wireless communicating sensors spread over the
area of interest; such sensors, in fact, are highly nonlinear and
unable to individually guarantee observability.

The rest of the paper is organized as follows. Section 2
introduces the problem setting. Section 3 describes the considered
family of DEKF algorithms for networked state estimation and
Section 4 analyzes its stability properties. Section 5 demonstrates,
via simulation experiments, the effectiveness of such a consensus
filter in a nonlinear target tracking case-study. Section 6 ends
the paper with concluding remarks. All mathematical proofs are
reported in the Appendix.

2. Problem setting

This paper addresses Distributed State Estimation (DSE) over a
sensor network consisting of two types of nodes: communication
nodes have only processing and communication capabilities,
i.e. they can process local data as well as exchange data
with neighboring nodes, while sensor nodes have also sensing
capabilities, i.e. they can sense data from the environment. Notice
that communication nodes are introduced to act as ‘‘relays’’
of information whenever sensor nodes are too far away to
communicate. For insights on the importance of considering the
effect of communication nodes when studying the properties of
a distributed state estimation algorithm we refer the reader to
Kamal et al. (2013), Wang et al. (2014) (where this type of nodes
is referred to as ‘‘naive nodes’’). In the sequel, the network will be
denoted by the triplet (S, C, A)where:S is the set of sensor nodes,
C the set of communication nodes,N = S


C,A ⊆ N ×N is the

set of arcs (connections) such that (i, j) ∈ A if node j can receive
data from node i (clearly (i, i) ∈ A for all i ∈ N ). Further, for each
node i ∈ N , N i will denote the set of its in-neighbors (including i
itself), i.e. N i 1

= {j : (j, i) ∈ A}.
The DSE problem over the sensor network (S, C, A) can be

formulated as follows. Consider a dynamical system

xt+1 = f(xt) + wt (1)

and a set of sensors S with measurement equations

yit = hi(xt) + vit , i ∈ S. (2)

Notice that the above measurement equation is defined only for
sensor nodes, since no measurement is supposed to be collected

Table 1
Information CEKF Algorithm, to be implemented at each sampling interval t =

1, 2, . . . starting from initial conditions x̂1|0 , �1|0 , q1|0 = �1|0 x̂1|0 .

by the communication nodes. Then the objective is to have, at each
time t ∈ {1, 2, . . .} and in each node i ∈ N , an estimate x̂t|t of the
state xt constructed only on the basis of the local measurements
(when available) and of data received from all adjacent nodes j ∈

N i
\ {i}.

2.1. Centralized extended Kalman Filter

Before describing the family of DEKF algorithms under con-
sideration, it is convenient to briefly recall the equations of the
centralized Extended Kalman Filter, which is assumed to simul-
taneously process all measurements {yik, i ∈ S}. Hereafter, for
convenience, the information filter form will be adopted. The in-
formation filter propagates, instead of the estimate x̂t|t−1 and co-
variance Pt|t−1, the information (inverse covariance) matrices

�t|t−1
1
= P−1

t|t−1, �t|t
1
= P−1

t|t

and the vectors

qt|t−1
1
= P−1

t|t−1x̂t|t−1, qt|t
1
= P−1

t|t x̂t|t
that will be referred to as information vectors. Then, the recursive
information filter of Table 1 can be derived (Battistelli et al., 2015),
where W and Vi, i ∈ N , are given positive definite matrices. A
typical choice for such matrices is to take W as an estimate of the
inverse covariance of the process disturbance wt , and each Vi as
an estimate of the inverse covariance of the measurement noise vit
affecting the ith sensor. Notice, however, that a specific choice of
such matrices is immaterial for the subsequent developments.

The algorithm of Table 1 generalizes the Information Kalman
Filter algorithm, corresponding to f(x) = Atx and hi(x) =

Ci
tx, to nonlinear systems (1) and/or sensors (2) via the Extended

Kalman Filter paradigm of linearizing the state and measurement
equations around the current estimate. With this respect, the
following assumption is needed.

A1. The functions f and hi, i ∈ S, are twice continuously differen-
tiable on Rn, where n = dim(x).

Notice that, in order to streamline the presentation, here and
in the following it is supposed that the functions f and hi, i ∈ S,
are defined over the whole Rn. However, all the results presented
hereafter could be suitably modified to account for the case when
the system trajectories are confined to a given set X ⊂ Rn.

3. Distributed extended Kalman Filter

The focus of this paper is on a family of DSE algorithmsproposed
in Battistelli et al. (2015) wherein each network node runs a local
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