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In this paper, we propose a measurement matrix design that improves the parameter estimation of an 
extended target in a compressive sensing multiple-input multiple-output (CS-MIMO) radar system. In 
our signal model, we consider the target impulse response (TIR) as an unknown vector that should be 
estimated in a compressive sensing scenario. Our proposed measurement matrix optimization method is 
based on minimizing the trace of the Cramer–Rao lower bound (CRLB) matrix in the presence of signal-
dependent interference and receiver noise, which leads to a nonlinear and non-convex optimization 
problem. To tackle design problem, we propose a three-stage optimization procedure in which a low 
rank matrix constraint is enforced. For comparison purpose, we also obtain the measurement matrix 
based on minimizing the block-coherence of the sensing matrix blocks. Numerical results demonstrate 
the effectiveness of our proposed method in parameter estimation of extended targets for CS-MIMO radar.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Multiple-input multiple-output radars are the state-of-the-art 
radars inspired by the idea of MIMO communications in which 
multiple antennas are used at the transmitter and the receiver. 
Generally speaking, MIMO radars can be classified according to an-
tennas placement. In MIMO radar with widely separated antennas, 
the transmit and receive antennas are set apart leading to indepen-
dent target observations from different directions, and thus, target 
detection, identification and tracking performance of targets will 
be improved [1–3]. In collocated type of MIMO radar, which is 
considered in this paper, the antennas are closely spaced leading 
to high angular resolution, more flexible design in transmit/receive 
beampattern, and enhanced target localization [4–7]. However, the 
fundamental problem in MIMO radars is high computational com-
plexity due to the large amount of received data from all receive 
antennas. A solution for reducing the amount of data is to exploit 
compressive sensing (CS) [8–12].

CS, which is rooted on the mathematical and statistical theory 
underlying sparse representations, has recently received consider-

E-mail addresses: n.shahbazi@ut.ac.ir (N. Shahbazi), abbasfar@ut.ac.ir
(A. Abbasfar), jabbarian@iust.ac.ir (M. Jabbarian-Jahromi), hamidami@aut.ac.ir
(H. Amindavar).

1 N. Shahbazi and A. Abbasfar are with the Array Processing Lab., School of Elec-
trical Engineering, University of Tehran, Tehran, Iran

2 H. Amindavar is with the Department of Electrical Engineering, Amirkabir Uni-
versity of Technology.

able attention in many different applications such as image recon-
struction [13,14], remote sensing [15,16], and radar systems [17,
18]. The concept of CS theory can be summarized as follows: if 
our interested signal x ∈ CN1×1 is sparse in a certain domain, it 
can be described as x = As, where A ∈ CN1×N2 is the basis matrix 
describing sparse domain and s ∈ CN2×1 is a sparse signal, i.e. most 
of its components are zero. Then, it is possible to compress signal 
x by using a measurement matrix T ∈ CM1×N1 as y = Tx, where 
(M1 < N1) and y ∈ CM1×1 is the measurement vector. To recover 
the sparse signal from measurement vector, various one and two 
dimensional sparse recovery algorithms such as �1-ls [19] and 2D-
IAA [20] have been developed.

Owing to the fact that the number of actual targets in radar 
surveillance area is much smaller than the whole number of radar 
bins, the received signal can be expressed by a sparse model 
[22]. In traditional CS radar, the problem of signal recovery for 
pointed targets has been investigated in many articles such as 
[5–12]. Recently, sparse reconstruction and waveform design have 
been addressed for extended targets in CS radar [23] using mu-
tual coherence criterion. In extended target model, the target is 
characterized by several scattering centers described as target im-
pulse response (TIR) [24,25]. Therefore, many optimization prob-
lems in radar systems such as waveform optimization [26], and 
target tracking [27] are developed accordingly. Also, different TIR 
models such as known, unknown deterministic, or random param-
eters have been considered in these applications.

In MIMO radar system, CS can be exploited to reduce the tra-
ditional sampling rate below the Nyquist rate by using a measure-
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ment matrix [8–11]. Therefore, measurement matrix can play a key 
role in the performance of target detection and estimation. In con-
ventional approaches, random matrices such as Gaussian random 
measurement matrix (GRMM), and Bernoulli are used in CS recov-
ery because such matrices are incoherent with any basis matrix 
with high probability [8], and thus, they satisfy the restricted isom-
etry property (RIP) that guarantees the stability of sparse recon-
struction algorithms [28]. However, these random measurement 
matrices are not necessarily the best matrices for CS and may 
cause wasting of accurately sampled signals. In [29], two different 
measurement matrices for CS-MIMO radar are designed to im-
prove detection performance based on two main criteria. The first 
one is minimization of linear combination of the inverse signal-to-
interference ratio (SIR) and the sum of the mutual coherence of all 
the cross columns of sensing matrix � = TA. The second criterion 
is maximization of SIR by enforcing a special structure on the mea-
surement matrix. As shown in this paper, if the proper waveforms 
(i.e. waveforms with very low auto- and cross-correlation sidelobes 
are very low) are selected, the mutual coherence criterion can be 
ignored due to heavy computational load and low performance in 
poor SIR. Also, this paper has considered the problem for point-
like target model. Furthermore, a measurement matrix design and 
power allocation for block CS-based distributed MIMO radars are 
conducted in [30] by considering point-like target model.

One of the best optimization criterion for parameter estimation 
is the Cramer–Rao lower bound (CRLB) which is the lowest pos-
sible root-mean-square error (RMSE) of deterministic parameters 
estimation for any unbiased estimator. If an unbiased estimator ex-
ist, the CRLB can be achieved in high SNR. The analysis of CRLB 
for parameter estimation has been considered for CS in [31–34]. 
In the presence of normal Gaussian noise, an adaptive CS method 
is proposed in [34] by minimizing the CRLB of only amplitude of 
nonzero elements in the sparse vector s. Furthermore, the wave-
form design for MIMO radar based on the CRLB is conducted in 
[35] and [36], showing the effectiveness of the CRLB criterion for 
radar optimization. Therefore, we hope that by pushing the CRLB 
down to zero, the RMSE of estimator will be reduced, which is 
confirmed by our simulation results.

In this paper, we optimize the measurement matrix of a CS-
MIMO radar system by minimizing the CRLB of the extended tar-
get parameters (including target angle and TIR coefficients) in the 
presence of signal-dependent interference (i.e. clutter) and receiver 
noise. In signal model derivation, we assume that the TIR of the 
extended target is unknown and should be estimated. As shown 
later, we are faced with a nonlinear and non-convex optimization 
problem. To tackle this problem, we propose a three-stage opti-
mization procedure to cope with nonlinearity and low rank matrix 
constraint.

To the best of our knowledge, no study of measurement matrix 
design for extended targets based on CRLB has been conducted 
prior to this work. Also, for comparison purpose, we obtain the 
measurement matrix based on minimizing the coherence of the 
sensing matrix. Since the CS model of extended target is block 
sparse, we minimize an upper bound of the summation of block-
coherence of the sensing matrix blocks.

This paper includes the following sections: Section 2 describes 
the signal model for extended targets in CS-MIMO radar. In sec-
tion 3, we derive the CRLB matrix of unknown parameters and 
optimize the measurement matrix based on minimizing the trace 
of the CRLB matrix. Simulation results are given in section 4 and 
Section 5 concludes the paper.

Notations. Lower case and capital letters in bold denote vectors 
and matrices, respectively. Superscripts (.)T , (.)∗ and (.)H denote 
the transpose, conjugate and Hermitian transpose of a matrix/vec-
tor, respectively. The operator ⊗, tr(.), and ln(.) are the Kronecker 

Fig. 1. Returns from the extended target can be represented by several scattering 
centers projected on the LOS of MIMO radar.

product, trace of a matrix, and natural logarithm respectively, and 
E{x} denotes the expected value over x. Re(.) and Im(.), are real 
and imaginary part of a complex-valued matrix (vector). IM is an 
M × M identity matrix.

2. Problem formulation

Considering a high range resolution radar in which the size of 
range cell is far smaller than the physical shape of the target, we 
can describe the target by a set of dominant scattering centers 
[37], [38] (see Fig. 1). In this case, the target can be represented 
by a finite impulse response corresponding to the projection of the 
scattering centers on the radar line-of-sight (LOS) [39]. As a matter 
of fact, the TIR is a function of the radar carrier frequency, phys-
ical shape of the target, and the target aspect angle (TAA), which 
is the angle between the radar LOS and the major axis of the tar-
get (heading direction) [40]. Let us consider a collocated MIMO 
radar having uniform linear array (ULA) with Mt transmit and Mr

receive antennas. The spatial steering vector of the transmit and 
receive antenna arrays for the azimuth angle αl are shown respec-
tively as,

aαl = [
1 e− jp2(αl) · · · e− jpMt (αl)

]T ∈ CMt×1, (1)

and

bαl = [
1 e− jq2(αl) · · · e− jqMr (αl)

]T ∈ CMr×1, (2)

where pt(αl) = 2π(t − 1)�T sin (αl) /λ0, and qr(αl) =
2π(r − 1)�R sin (αl) /λ0, with (t = 1, ..., Mt), (r = 1, ..., Mr). Also, 
�T , and �R are the distance between elements of the transmit 
and the receive antennas and λ0 is the transmitted signal wave-
length. We show the TIR vector in the radar interest area by

hl = [hl (0) · · · hl (Lh − 1)]T ∈ CLh×1. (3)

The transmitted code sequence of tth transmit antenna with 
length Lt is denoted by ct ∈ CLt×1 (t = 1, · · · , Mt), whose ith com-
ponent is ct(i) = 0 unless i ∈ {1, 2, · · · , Lt}. For extended target 
model, the echoed signal is the convolution of the transmitted 
signal and the TIR. Considering an extended target located at par-
ticular Lh range-bins of interest, the nth sample of the received 
signal by the rth receive antenna corresponding to the tth trans-
mit antenna is given by

vrt (n) =
Nt∑

l=1

e− j(qr(αl)+pt (αl)) (hl ∗ ct) (n) , (4)

where αl is the target angle and ∗ denotes the convolving opera-
tion. The convolution of transmitted signal and target TIR could be 
calculated as,

(hl ∗ ct) (n) =
Lh−1∑
k=0

hl (k) ct (n − k) , (5)
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