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In this paper, we address the problem of estimating the directions of arrival of far-field source signals. 
For that, we propose a new nonuniform linear array that allows the analyst to model the array 
data snapshot as a second-order polynomial phase signal. This permits the use of polynomial phase 
parameter estimation and time-frequency based estimation techniques, in addition to existing direction 
of arrival estimation methods. Furthermore, for the purpose of simplifying the analysis, we propose 
here an estimation technique based on the Wigner–Ville distribution kernel. Examples and Monte-Carlo 
simulations are presented to show the validity, effectiveness, and statistical efficiency of this technique.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Parameter estimation theory has been of great interest to many 
researchers and scientists for decades. Its importance stems from 
the fact that it underpins the design of many engineering systems 
for information extraction [1,2]. Array processing can be consid-
ered as a natural spin-off of parameter estimation theory, whereby, 
relevant temporal as well as spatial parameters are estimated. Ar-
ray processing techniques have the ability to combine data col-
lected at several sensors in order to perform a particular estima-
tion task [3].

The use of an array of sensors to extract information from 
a propagating wave (or signal) is of importance in a variety of 
applications such as radar, sonar, communications, and seismol-
ogy [4–12]. The information of interest could be the content of the 
signal itself, the signal source location, or the reflection that pro-
duces it (e.g., radar, sonar) [2]. In general, the array geometry can 
be in different shapes and sizes, depending on the problem inves-
tigated; however, the linear is the most popular and widely used 
in real-life applications [13].

A linear array can be constructed by using sensors that are uni-
formly or nonuniformly spaced. In a uniform linear array (ULA), 
the sensors are located on a straight line with the same inter-
element spacing. For nonuniform linear arrays (NLAs), sensors are 
usually placed at integer multiples of a unit distance [14]. NLAs 
strive to cover a large array aperture with a limited number of 
sensors. NLAs outperform ULAs when the same number of sen-
sors is considered [13–15]. NLAs are also referred to as sparse 
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arrays, which have surged over the last decade as part of area of 
sparse sensing. Sparse arrays include minimum redundant arrays, 
minimum hole arrays, co-prime arrays and nested arrays [16–18]. 
The aforementioned arrays attempt to place the sensors such as 
the coarray have larger aperture than the ULA counterpart. Other 
sparse configurations construct sparse arrays for stable DOA esti-
mation and increased signal-to-noise ratio [19,20]. In general, the 
analysis for this type of arrays invites subspace and singular value 
decomposition techniques [21,22].

In this paper, we consider the problem of estimating the direc-
tions of arrival (DOA) of far-field source signals. Unlike the above 
array design criteria, we propose a new NLA geometry that allows 
modeling the array signal in a quadratic form similar to a chirp 
signal. The progressive inter-element spacing with sensor number 
along the array, which is associated to a chirp quadratic phase, 
makes the proposed array structure applicable to situations where 
enforcing the ULA configuration is difficult or challenged. Also, 
in addition to existing DOA estimation techniques, the proposed 
quadratic signal model permits the possibility to apply mature and 
well established techniques such as polynomial phase signal (PPS) 
estimation techniques [23–25] and time-frequency based estima-
tion techniques [26,27]. Furthermore, for the purpose of simplify-
ing the analysis, we propose here to use the kernel of the Wigner–
Ville distribution (WVD) [28–30] to convert the problem of DOA 
estimation to that of a simple frequency estimation of a sinusoid 
(or sum of sinusoids) corrupted by interference and noise. In ad-
dition to its simplicity, we show that the proposed estimation is 
computationally and statistically efficient in the estimation of the 
DOA of arbitrary source signals.

The paper is organized as follows. In Section 2, we consider 
the single source case. In this section, we formulate the problem 
under investigation, present the new array geometry, propose an 
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Fig. 1. A signal s(t) impinging on a linear array from an angle θ .

estimation technique, and develop the Cramer–Rao lower bound 
(CRLB) for the new model. In Section 3, we extend the analysis to 
the multiple sources case. Various examples are presented in both 
cases to show the validity and accuracy of the proposed method. 
Section 4 concludes the paper.

2. Single source

2.1. Proposed nonlinear array configuration & model

The problem set up, shown in Fig. 1, represents a signal s(t)
propagating at a velocity v(t) and impinging on a linear array at 
an angle θ . The array consists of M sensors, Si, i = 1, . . . , M , all 
assumed to be omnidirectional and located on the same elevation.

If we assume the velocity v(t) to be constant during the time 
the wave crosses the array [8], and consider sensor S1 to be the 
reference sensor, then, the sensor outputs can be expressed as

x(t) = v(θ)s(t) + w(t), (1)

where

x(t) = [x1(t) x2(t) . . . xM(t)]T (2)

v(θ) =
[

e j2π F0d0 cos θ/v e j2π F0d1 cos θ/v . . . e j2π F0dM−1 cos θ/v
]T

(3)

w(t) = [w1(t) w2(t) . . . w M(t)]T . (4)

In these expressions, v(θ) represents the data steering vector, w(t)
is a zero-mean Gaussian noise with covariance matrix Cw = σ 2I, 
s(t) is the source signal, and di−1, i = 1, 2, . . . , M (with d0 = 0), is 
the distance between sensor Si and the reference one. If we select 
these distances such that

d1 = d, d2 = 4d, d3 = 9d, . . . dM−1 = (M − 1)2d,

(5)

where d is a pre-defined arbitrary distance, then, the steering vec-
tor becomes

v(a) =
[

e j2π ·a·(0)2
e j2π ·a·(1)2

e j2π ·a·(2)2
e j2π ·a·(3)2

. . .

e j2π ·a·(M−1)2
]T

(6)

=
[

e j2πam2
]
, m = 0,1, . . . , M − 1,

where a = F0d cos θ/v . We observe that v(a) is an M-sample, unit-
amplitude, second-order polynomial phase signal, uniformly sam-
pled at a sampling period equal to unity. Thus, for a fixed snap-
shot t , the column vector x(t) is just a noisy linear FM signal and, 
consequently, estimating θ is equivalent to estimating the phase 
coefficient of x(t).

2.2. Proposed estimation method

The WVD is defined as [26]

W (t′, f ) =
+∞∫

−∞
z(t′ + τ

2
) · z∗(t′ − τ

2
) e− j2π f τ dτ

=
+∞∫

−∞
Kz(t

′, τ ) e− j2π f τ dτ , (7)

where z(t′) is the analytic signal associated with the signal under 
consideration, and Kz(t′, τ ) is called the WVD kernel.

In our present case, for a fixed snapshot t , the noiseless quan-
tity of the data model in (1) can be written in the following form

z(t′) = s(t)e j2πat′ 2
. (8)

Thus, if we apply the WVD kernel on this quantity, we obtain

K (t′, τ ) = z(t′ + τ

2
) · z∗(t′ − τ

2
) = |s(t)|2e j2π(2at′)τ . (9)

The above result indicates that, for a fixed time instant t′ , the WVD 
kernel, as a function of the variable τ , is just a complex sinusoid 
with frequency equal to 2at′ . Consequently, its Fourier transform 
can be used as an estimator of the frequency 2at′ , or equivalently 
the parameter a. Also, we know that the best estimation perfor-
mance occurs when the implementation window length for τ is 
the largest possible [31]. In our current model, this happens at 
t′ = (M − 1)/2 (with M selected to be an odd integer). Therefore, 
we use this particular time instant to estimate the parameter a. 
That is, we compute the FFT of the WVD kernel for t′

0 = (M −1)/2, 
i.e.,

W z(t
′
0, f ) = F

τ → f
[

Kz(t
′
0, τ )

]
= F

τ → f

[
z(t′

0 + τ

2
) · z∗(t′

0 − τ

2
)
]
, (10)

and search for the maximizer of this spectrum to estimate the de-
sirable parameter a.

It is worth noting that by an alternative choice of the distances 
in (5), we can model the array signal by a higher-order PPS, for 
which we apply the kernel of the corresponding optimal polyno-
mial WVD [29] to convert it into a complex sinusoid. An advantage 
of this new distance distribution is the reduced number of sen-
sors needed to cover the same array aperture, but at the price of 
a slight estimation performance degradation [31]. This point is out 
of the scope of this presentation and will be considered in a future 
work.

2.3. Example

In this example, we consider a seismic wave, s(t), impinging on 
a linear array consisting of M = 21 sensors. These sensors, with re-
spect to the first one, are located according to (5) with d = 10 [m]. 
The seismic wave at the first sensor (selected as the reference sen-
sor) is expressed as

s(n) = exp
[

j2π(2nTs + 0.6(nTs)
3)

]
,

n = −500,−499, . . . ,500,

where Ts , the sampling period, is set equal to 1/100 [sec]. The 
WVD of this signal, computed according to Equation (7), is dis-
played in Fig. 2.

The wave is assumed to be propagating at an apparent velocity 
v = 1000 m/s, with an angle θ = 85◦ , and frequency F0 = 5 [Hz]. 
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