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In compressed sensing (CS), sparse or compressible signals can be reconstructed with fewer samples than 
the Nyquist–Shannon theorem requires. Over the past ten years, CS has developed into a relatively mature 
theory and this brand-new technique has been widely used in many fields such as image processing, 
wireless communication and medical imaging. In this paper, we propose a new model for signal 
compression and reconstruction based on semi-tensor product, called STP-CS, which is a generalization 
of traditional CS. Like traditional CS, we investigate some reconstruction conditions of STP-CS in terms 
of the spark, the coherence and the restricted isometry property (RIP). The experimental results show 
that STP-CS has the flexibility to choose a lower-dimensional sensing matrix for signal compression and 
reconstruction.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

As one of emerging research fields in signal processing, com-
pressed sensing (CS) has attracted considerable attention in recent 
ten years, because it can reconstruct sparse signals from very few 
incoherent measurements [1–3]. The standard framework of CS is 
a special case of underdetermined linear equations

y = �θ , (1)

where � is an m × n matrix with m < n. Eq. (1) reflects that the 
original n-dimensional signal θ is compressed into an m-dimen-
sional vector y. However, it is impossible to directly reconstruct the 
original signal θ from y because there are infinitely many solutions 
for Eq. (1). Fortunately, some natural signals can be represented 
using only a few non-zero coefficients in a suitable basis or dictio-
nary [4,5]. Namely,

θ = �x, (2)

where � is a sparsifying dictionary and x is a sparse vector. We 
say a vector x is k-sparse, denoted by x ∈ ∑

k , if it has at most 
k � n nonzero entries. Thus, we have

y = ��x = Ax, (3)
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where A = �� is regarded as the sensing matrix in CS. For a 
matrix A, the spark of A is the smallest number of columns of 
A that are linearly dependent. Donoho and Elad showed that if 
spark(A) > 2k, then for each measurement vector y ∈Rm there ex-
ists at most one signal x ∈ ∑

k such that y = Ax [6]. Because find-
ing sparse solutions to underdetermined systems of linear equa-
tions is in general NP-hard [1], the sensing matrix A satisfying such 
condition is impracticable. Thus, how to construct sensing matri-
ces becomes one of the most important research directions in the 
field of CS. Fortunately, Candès and Tao proposed a typical criterion 
for constructing sensing matrix, called restricted isometry property 
(RIP) [1,7]. A matrix A satisfies the RIP of order k if there exists a 
δA

k ∈ (0, 1) such that

(1 − δA
k )‖x‖2

2 ≤ ‖Ax‖2
2 ≤ (1 + δA

k )‖x‖2
2 (4)

holds for all x ∈ ∑
k . Random matrices A ∈ Rm×n with entries 

drawn from a Gaussian distribution, a Bernoulli distribution or 
more generally a sub-Gaussian distribution have spark(A) = m + 1
with high probability [8]. And such matrices satisfy the RIP with 
overwhelming probability, providing that m = O ((δA

k )−2k log n
k )

[8,9]. However, such random constructions are often not feasible 
for real-word applications because some sensing devices with lit-
tle storage resources are impossible to store all the entries of the 
sensing matrix when the size of the matrix is very large. To reduce 
the storage burden, some deterministic approaches for constructing 
sensing matrices have been proposed, such as structurally sub-
sampled matrices [8], Toeplitz sensing matrices [10], and chaotic 
sensing matrices [11].
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While the RIP guarantees recovery of k-sparse signals, verify-
ing that a general matrix A satisfies the RIP has a combinatorial 
computational complexity, since one must essentially consider 

(n
k

)
submatrices. In many cases it is preferable to use properties of 
A that are easily computable to provide more concrete recovery 
guarantees. The coherence of a matrix is one such property. The 
coherence μ(A) of a matrix A is the largest absolute normalized 
inner product between any two columns of A:

μ(A) = max
1≤i �= j≤n

|〈ai,a j〉|
‖ai‖2‖a j‖2

, (5)

where ai denotes the i-th column of A. It is easy to show that 
μ(A) ∈ [

√
n−m

m(n−1)
, 1] [12,13].

A straightforward approach to obtain the original k-sparse vec-
tor x from Eq. (3) can be viewed as the optimization problem of

x∗ = arg min
x

‖x‖0 subject to Ax = y, (6)

which is called l0 optimization problem. Since the convex prop-
erty of l1 norm, a classic method used in compressed sensing is to 
replace ‖x‖0 with ‖x‖1, i.e.,

x∗ = arg min
x

‖x‖1 subject to Ax = y. (7)

If δA
2k <

√
2 − 1, the solution to the l1 problem is that of the l0

problem [7]. In addition to l1-based algorithms, many greedy algo-
rithms, such as orthogonal matching pursuit [14], StOMP [15] and 
CoSaMP [16], have been proposed for sparse signal reconstruction.

Based on traditional CS, Gan introduced the concept of block 
compressed sensing (BCS) for natural images [17], where image 
acquisition is performed in a block-by-block manner through the 
same sensing matrix. In BCS, an image is first divided into B × B
non-overlapping blocks and then acquired using an appropriately 
sized sensing matrix. Namely, suppose that xi is a vector repre-
senting the i-th block of the input image. The corresponding yi
is then yi = AB xi , where AB is an mB × B2 sensing matrix with 
mB = �mB2

n �. Because of lightweight reconstruction complexity and 
lower storage overhead, BCS has been widely used in various 
multiple-image scenarios, such as video and multi-view imagery 
[18,19].

In this paper, we propose a new model for signal compression 
and reconstruction based on semi-tensor product (STP), called STP-
CS, which can be viewed as a generalization of tradition CS. This 
new model breaks the dimension matching condition of the tra-
ditional CS model in Eq. (3), i.e., the number of columns of the 
sensing matrix A must be equal to the length of the signal x. 
Under this brand-new model, we first analyze the uniqueness of 
sparse solution in terms of spark and coherence from a theoretical 
point of view. Subsequently, we find that the RIP constant of order 
k in traditional CS is equal to that in our proposed STP-CS model. 
It implies that some classical sensing matrices in CS, such as Gaus-
sian, Bernoulli, and Chaotic sensing matrix, can also be used in 
STP-CS. In addition, we give the exact reconstruction condition on 
the sensing matrix, which is sufficient for a variety of algorithms to 
be able to successfully reconstruct the original sparse signal from 
measurements. At last, the experiment results prove the validity 
of our theory analysis. Compared to several previous methods for 
signal compression and reconstruction, the main advantages of our 
proposed STP-CS can be summarized as follows:

• Low-storage overhead. With the help of the semi-tensor product 
theory, STP-CS can compress high-dimensional signals using 
lower-dimensional sensing matrices. As a generalization of CS, 
STP-CS has the flexibility to choose a lower-dimensional sens-
ing matrix. In addition, the experimental results show that the 

storage overhead of sensing matrices in STP-CS is smaller than 
that in BCS when the size of each block is not too small.

• Parallel reconstruction. The reconstruction algorithm in STP-CS 
can be implemented in a parallel fashion. The theoretical anal-
ysis indicates that a reconstruction instance in STP-CS can be 
transformed into some independent reconstruction instances 
in CS. Thus, it can simultaneously perform the reconstruction 
phase among multiple CS decoders and will lead to the reduc-
tion of the total reconstruction time.

The rest of this paper is organized as follows. Section 2 recalls 
some basic background knowledge of semi-tensor product. We will 
first introduce the STP-CS model and then give our theoretical re-
sults in Section 3. In Section 4, some experiments are carried out 
to simulate the performance of STP-CS. Section 5 provides a com-
parison among traditional CS, BCS, and our proposed STP-CS. Last 
we conclude this paper in Section 6.

2. Semi-tensor product

The concept of STP of matrices was proposed by Cheng et al., 
which is a generalization of conventional matrix product [20–23]. 
This novel theory is able to perform matrix multiplication when 
two matrices do not meet the dimension matching condition. STP 
has received great attention in a variety of areas, including multi-
linear algebra [26], game theory [25], and boolean networks [24].

Definition 1. [22] Let x be a row vector of dimension np, and y
be a column vector with dimension p. Split x into p equal blocks, 
named x1, · · · , xp , which are 1 ×n vectors. Define the STP, denoted 
by �, as⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x � y =
p∑

i=1

xi yi ∈R1×n;

yT � xT =
p∑

i=1

yi(xi)T ∈Rn×1.

(8)

Definition 2. [22] Let A ∈Rm×n and B ∈ Rp×q . If either n is a factor 
of p or p is a factor of n, then we define the STP of A and B as the 
following: C consists of m × q blocks as C = (ci j) and each block is

ci j = ai � b j, i = 1,2, · · · ,m, j = 1,2, · · · ,q, (9)

where ai is the i-th row of A and b j is the j-th column of B.

Given two matrices A ∈Rm×n and B ∈ Rp×q , the Kronecker prod-
uct between them is defined as

A ⊗ B =
⎡
⎢⎣

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

⎤
⎥⎦ ∈Rmp×nq. (10)

Equivalently, we can also define the STP using Kronecker product.

Definition 3. [23] The STP of two matrices A ∈Rm×n and B ∈ Rp×q

is defined as

A � B = (A ⊗ It/n)(B ⊗ It/p), (11)

where t is the least common multiple of n and p, i.e., t = lcm(n, p).

Remark 1. Note that (A ⊗ It/n) ∈ Rmt/n×t and (B ⊗ It/p) ∈ Rt×qt/p , 
so A � B ∈ Rmt/n×qt/p .

Remark 2. If p = n, then A � B = (A ⊗ I1)(B ⊗ I1) = AB. It is the 
standard matrix product.
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