
Automatica 68 (2016) 294–304

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Global leader-following consensus of a group of general linear
systems using bounded controls✩

Zhiyun Zhao a, Zongli Lin b,1

a Department of Automation, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of
China, Shanghai 200240, China
b Charles L. Brown Department of Electrical and Computer Engineering, University of Virginia, P.O. Box 400743, Charlottesville, VA 22904-4743, USA

a r t i c l e i n f o

Article history:
Received 25 April 2015
Received in revised form
13 September 2015
Accepted 30 November 2015
Available online 12 March 2016

Keywords:
Consensus
Bounded control
Directed communication topology
Multi-agent systems

a b s t r a c t

This paper studies the global leader-following consensus problem for amulti-agent systemwith bounded
controls. The follower agents and the leader agent are all described by a general linear system. Both a
bounded state feedback control law and a bounded output feedback control law are constructed for each
follower agent in the group. The feedback law for each input of an agent uses amulti-hop relay protocol, in
which the agent obtains the information of other agents through multi-hop paths in the communication
network. The number of hops each agent uses to obtain its information about other agents for an input
is less than or equal to the sum of the number of eigenvalues at the origin and the number of pairs of
non-zero imaginary eigenvalues of the sub-system corresponding to the input, and the feedback gains
are constructed from the adjacency matrix of the communication network. It is shown that global leader-
following consensus is achieved under these feedback control laws when the communication topology
among follower agents is a strongly connected and detailed balanced directed graph and the leader is a
neighbor of at least one follower.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

As a central problem in coordinated control of multi-agent
systems, consensus entails the states of all agents in the system
to converge to an agreement state through the use of local
information by each agent. The consensus problem has drawn vast
attention in recent years. This was in part due to the superiority
of a multi-agent system over individual systems performing solo
tasks, and in part due to its many applications, such as unmanned
air vehicles, autonomous underwater vehicles, distributed sensor
networks and mobile robots (Alighanbari & How, 2005; Chen, Lu,
Yu, & Hill, 2013; Cook & Hu, 2010; Cortés & Bullo, 2005; Klein,
Bettale, Triplett, & Morgansen, 2008).

In the early literature on coordinated control of multi-agent
systems, the dynamics of an agent is often simplified to the
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kinematics of a single-integrator (Jadbabaie, Lin, & Morse, 2003;
Olfati-Saber & Murray, 2004; Ren & Beard, 2005) or the dynamics
of a double-integrator (Ren, 2008; Ren, Beard, & Atkins, 2005).
Various aspects of the consensus problem have been studied for
single-integrator or double-integrator agents. For example, multi-
hop relay protocols were proposed and shown to achieve fast
consensus seeking (Jin & Murray, 2006). The dynamics of most
practical agents are however much more complex than those of
a single-integrator or a double-integrator. Consequently, many of
the early results cannot be directly used in practical applications,
which has motivated the study of coordinated control of more
general multi-agent systems. It is proven in Ren, Moore, and Chen
(2006) that a group of networked agents described by a chain of
multiple integrators can achieve global leaderless consensus when
the number of zero eigenvalue of a certain matrix constructed
from the Laplacian matrix associated with the communication
topology is the same as the number of the integrators in an agent,
and the remaining eigenvalues all have negative real parts. On
the other hand, the consensus problem for a multi-agent system
whose agents are described by a general higher order linear system
is considered in He and Cao (2011), Seo, Shim, and Back (2009)
and Yu, Chen, Ren, Kurths, and Zheng (2011). In particular, it is
proven in Seo et al. (2009) that a group of N networked agents
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can achieve consensus if N − 1 systems constructed in a special
form can be simultaneously stabilized by a stable compensator,
which is constructed with the low gain feedback design technique
(Lin, 1999). Coordinated control of more general agents has also
been studied in the contexts of, for example, output regulation
(Su, Hong, & Huang, 2013; Su & Huang, 2012; Yang, Stoorvogel,
Grip, & Saberi, 2014), nonlinear agent dynamics (Liu & Jiang, 2016),
and heterogeneous agent dynamics (Ding, 2013; Yang, Saberi,
Stoorvogel, & Grip, 2014).

The ubiquity of actuator saturation in control systems has also
motivated the study of the consensus problem with bounded
controls. Global consensus in the presence of actuator saturation
has only been studied for agents with simple dynamics. Global
leaderless consensus was considered in Li, Xiang, and Wei (2011),
where the agents are represented by single integrator systems and
the communication topology among agents is assumed to contain
a directed spanning tree. Global leader-following consensus
for agents that are represented by double integrator dynamics
or general higher order but neutrally stable linear systems
was studied in Meng, Zhao, and Lin (2013) and Yang, Meng,
Dimarogonas, and Johansson (2014). In particular, for double
integrator agents, it was established that global leader-following
consensus can be achieved by linear local feedback laws over a
fixed communication topology or by non-linear local feedback
laws over a switching communication topology. For neutrally
stable agents, it is shown that global leader-following consensus
can be achieved by linear local feedback laws over either a fixed
communication topology or a switching communication topology.
On the other hand, semi-global leader-following consensus was
achieved in Su, Chen, Lam, and Lin (2013) for general higher order
systems whose open loop poles are all in the closed left-half plane
by using the low gain feedback design technique (Lin, 1999).

In contrast with the limited number of results on multi-agent
consensuswith bounded controls, global stabilization of individual
linear systems with bounded controls has been systematically
studied. It has been established (Sussmann, Sontag, & Yang,
1994; Sussmann & Yang, 1991) that a linear system subject to
control input saturation can be globally asymptotically stabilized
only when it is asymptotically null controllable with bounded
controls (ANCBC), that is, it is stabilizable and all its open-
loop poles are located in the closed left-half plane, and even
for such systems, linear feedback is in general not capable of
achieving global asymptotic stabilization except for special classes
of systems such as double integrators and neutrally stable systems.
Nonlinear feedback laws of nested saturation type and in the form
of weighted sum of saturated linear feedbacks were proposed
in Sussmann et al. (1994) and Teel (1992) to achieve global
asymptotic stabilization of such ANCBC systems.

In this paper, we consider the problem global leader-following
consensus for a groupof networked agents using bounded controls.
The dynamics of each agent is represented by a general linear
system. For each follower agent, we construct both a bounded
state feedback control law and a bounded output feedback control
law. The feedback law for each input of an agent uses a multi-hop
relay protocol, in which the agent obtains the information of other
agents through multi-hop paths in the communication network.
The number of hops each agent uses to obtain its information
about other agents for an input is less than or equal to the
sum of the number of eigenvalues at the origin and the number
of pairs of non-zero imaginary eigenvalues of the sub-system
corresponding to the input, and the feedback gains are constructed
from the adjacency matrix of the communication network. We
show that global leader-following consensus is achieved under
these feedback control laws when the communication topology
among the follower agents is a strongly connected and detailed
balanced directed graph and the leader is a neighbor of at least one
follower.

An outline of this paper is as follows. Section 2 recalls some
basic definitions and notations in graph theory. Section 3 contains
problem statement. Section 4 focuses on the case that the follower
agents have a single input. Section 5 extends the results in Section 4
to the multiple input case. Section 6 concludes the paper.

2. Graph theory

A directed graph is denoted as G = (V, E), where V =

{ν1, ν2, . . . , νN} is a finite, nonempty set of nodes (each node
denotes a follower agent) and E ∈ V × V is a set of edges
(each edge denotes an ordered pair of nodes). An edge (νi, νj) in
a directed graph denotes that agent j has access to the information
of agent i. A directed path in a directed graph is a sequence
of edges of the form (νi1, νi2), (νi2, νi3), . . . . A directed path
(νi, νi1), (νi1, νi2), . . . , (νik−1, νj) between νi and νj is called a
k-hop, and νi is called a kth neighbor of νj. A directed graph is
strongly connected if there exists a directed path between any pair
of distinct nodes.

Let A = [aij] ∈ RN×N be the adjacency matrix associated with
G, where aij > 0 if (νj, νi) ∈ E and aij = 0 otherwise. Here we
assume that aii = 0 for all i = 1, 2, . . . ,N . Let L = [lij] ∈ RN×N

be the Laplacian matrix associated with A, where lii =
N

i=1 aij
and lij = −aij when i ≠ j. A directed graph is detailed balanced if
there exist some real numbers vi > 0, i = 1, 2, . . . ,N , such that
viaij = vjaji, for all i = 1, 2, . . . ,N (Jiang & Wang, 2009).

Besides the N follower agents, the leader agent is labeled as
ν0. The communication between follower agent i and the leader
agent is denoted as ai0, where ai0 > 0 if agent i has access to
the information of the leader agent and ai0 = 0 otherwise. The
communication topology G we consider in this paper satisfies the
following assumption.

Assumption 1. The directed graph G is strongly connected and
detailed balanced and ai0 > 0 for at least one i, i = 1, 2, . . . ,N .

Denote M = L + diag{a10, a20, . . . , aN0}. Let v = [v1, v2,
. . . , vN ]

T, diag{v} = diag{v1, v2, . . . , vN}, vmin = min{v1, v2, . . . ,
vN} and vmax = max{v1, v2, . . . , vN}.

Lemma 1. Under Assumption 1, all eigenvalues of M are on the
open right-half plane, and the matrix diag{v}M + MTdiag{v} =

2MTdiag{v} is positive definite.
In the above lemma, the fact that all eigenvalues of M are on

the open right-half plane is established in Ren and Cao (2011) and
the fact that diag{v}M + MTdiag{v} = 2MTdiag{v} is positive
definite can be established based on the analysis given in the proof
of Lemma 4 in Hu and Hong (2007).

3. Problem statement

Consider a group of N networked follower agents, each
described by a linear system,
ẋi = Axi + Bui, yi = Cxi, i = 1, 2, . . . ,N, (1)
where xi = [xi1, xi2, . . . , xin]T ∈ Rn, ui = [ui1, ui2, . . . , uim]

T
∈ Rm

and yi = [yi1, yi2, . . . , yir ]T ∈ Rr are respectively the states, control
inputs and outputs of agent i. Let the leader be also described by a
linear system,
ẋ0 = Ax0, y0 = Cx0, (2)
where x0 = [x01, x02, . . . , x0n]T ∈ Rn and y0 = [y01, y02, . . . , y0r ]T
∈ Rr are respectively the states and outputs of the leader agent.

Assumption 2. All eigenvalues of A are on the closed left-half
plane and the pair (A, B) is stabilizable.

Assumption 3. The pair (A, C) is detectable.
The global leader-following consensus problems we are to

study are stated as follows.
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