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a b s t r a c t

This paper addresses the design of convergence and performance certified sampled-datamodel predictive
control (MPC) laws with a time-dependent economic performance index. More precisely, using a
dissipativity property of the system, we provide a set of sufficient conditions that guarantee convergence
of the closed-loop state trajectory to a, possibly time-varying, average economically optimal state
trajectory.Moreover, the average performance of the closed-loop system is shown to be noworse than the
one obtained by operating the system at the average economically optimal state trajectory. Constructive
methods to design an appropriate terminal set and terminal cost that satisfy the proposed sufficient
conditions are presented and illustrated with numerical examples.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

A key factor that allowed Model Predictive Control (MPC)
schemes to gain an important role in many practical applications
lies in their ability to explicitly optimize over a desired perfor-
mance index, while satisfying state and input constraints. Ideally
one would wish to minimize the infinite horizon time integral of
a predefined stage cost evaluated along the constrained state and
input trajectories. Although, since this problem is generally in-
tractable,MPC is often used to approximate the infinite horizon op-
timization with a sequence of easier finite horizon optimizations.
Depending on the meaning of the chosen stage cost, we can dis-
tinguish between classic MPC schemes, also termed Tracking MPC,
and Economic MPC schemes.
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The main objective of a Tracking MPC controller is to steer
the state of a system to a desired steady-state or state trajectory.
Toward this goal, the stage cost is properly designed to penalize the
distance from the current state to the desired one. This approach
has been widely investigated in the literature and, depending on
themethodology used to approximate the infinite horizon optimal
control problem,we can identify two families of schemes: the ones
that utilize the so-called terminal sets and terminal costs and the
terminal-set-free schemes. For the first family we refer the reader
to, e.g., Mayne, Rawlings, Rao, and Scokaert (2000), Morari and
Lee (1999) and Rawlings and Mayne (2009) for the discrete-time
case and Chen and Allgöwer (1998), Fontes (2001) and Jadbabaie,
Yu, and Hauser (2001) for the continuous-time. Similarly, for the
second family, we refer to Grüne and Pannek (2011) and Reble and
Allgöwer (2012) for the discrete-time and continuous-time case,
respectively.

In recent years, a growing attention has been devoted to Eco-
nomic MPC schemes, where the main objective is the minimiza-
tion of a performance index associatedwith a given economic stage
cost. Here, the term economic is utilized to emphasize that such
function is not designed to penalize the distance of the current
state to the desired one, but it rather represents an index of in-
terest to be minimized, e.g., an economic index. Such generality
gives rise to many interesting applications. Similarly to the Track-
ing MPC case, also in this case the infinite horizon problem can
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be approximated using a terminal set and a terminal cost or, in a
terminal-set-free approach, by properly selecting a long horizon. In
the works Diehl, Amrit, and Rawlings (2011), Amrit, Rawlings, and
Angeli (2011) and Angeli, Amrit, and Rawlings (2012), the econom-
ically optimal steady-state is precomputed and used to constrain
the terminal state of the prediction with a terminal equality (Am-
rit et al., 2011; Diehl et al., 2011) or inequality (Angeli et al., 2012)
constraint. Sufficient conditions for stability of the economically
optimal steady-state were initially provided in Diehl et al. (2011),
and later generalized by Amrit et al. (2011) and Angeli et al. (2012)
using a dissipativity property of the system. In Grüne (2013), the
author provides conditions on the horizon length and stage cost
for closed-loop convergence to an arbitrarily small neighborhood
of the optimal steady-state. Stability and recursive feasibility prop-
erties of the EconomicMPC controller for the case of changes in the
economic stage cost are addressed in Ferramosca, Rawlings, Limon,
and Camacho (2010).

Although the use of dissipativity properties of a system
provides an elegant approach for analysis and design of Economic
MPC schemes, alternative methods have been proposed. The
works Fagiano and Teel (2013)and Müller, Angeli, and Allgöwer
(2013) employ a generalized terminal set, consisting of all
the feasible steady-states, and a constraint on the increase of
the terminal cost to guarantee convergence to a steady-state.
In Heidarinejad, Liu, and Christofides (2012), the authors discuss
the use of a given control Lyapunov function (CLF), defined over
the whole desired region of attraction, to design a dual mode
scheme. Here, initially the economic optimization is performed
while enforcing the state within a level set of the CLF, and then, at
a given point triggered at an arbitrary time, a Lyapunov decrease is
enforced driving the state to the desired equilibrium point. In the
works Maree and Imsland (2014), Alessandretti, Aguiar, and Jones
(2013) and Alessandretti, Aguiar, and Jones (2015) a combination
of a classic stage cost and an economic stage cost is adopted.
In this case, assumptions on the magnitude of the economic
stage cost are introduced in order to preserve stability (Maree
& Imsland, 2014), convergence (Alessandretti et al., 2013), and
ultimate boundedness (Alessandretti et al., 2015) guarantees.

To the best of our knowledge, almost all the research devoted
to Economic MPC is developed for discrete-time systems, even if
the applications, addressed via discretization, are often stemming
from continuous-time dynamical models. One exception is the
work of Heidarinejad et al. (2012) that has the restriction of
requiring a CLF defined over thewhole desired region of attraction.
Moreover, while a vast effort was dedicated to the analysis and
synthesis ofMPC schemes leading to the convergence of the closed-
loop state trajectory to a steady-state, few results address the
interesting scenario of time-varying stage cost and convergence
to potentially time-varying state trajectories. See, for instance, the
works Angeli et al. (2012), Zanon, Gros, and Diehl (2013) and
Limon, Pereira, Muñoz De La Peña, Alamo, and Grosso (2014),
for the case of closed-loop convergence to periodic orbits in the
discrete-time setting. Furthermore, only Amrit et al. (2011) and
Müller, Angeli, Allgöwer, Amrit, and Rawlings (2014) address the
relaxation from terminal equality to terminal inequality in the
dissipativity-based approach.

Inspired by these observations, this work addresses the design
of a continuous-time Economic MPC with terminal constraint
for time-varying continuous-time systems with time-dependent
stage cost and with convergence and performance guarantees. The
main dissipativity-based results introduced in the time-invariant
discrete-time case are extended to the time-varying setting for
continuous-time systems. Moreover, an average performance
analysis of the MPC controller is performed and constructive
methods for the computation of a suitable terminal set and a
terminal cost are presented. We build on our previous result

in Alessandretti, Aguiar, and Jones (2014), extending it to the
case of time-varying systems, constraints, performance indexes,
and dissipative functions. The differentiability assumption on
dissipativity function and terminal cost is dropped. Moreover,
convergence to a time-varying state trajectory, rather than a
steady-state, and the associated extension on the performance
analysis is presented.

The remainder of this paper is organized as follows: Section 2
contains the problem definition. Sections 3 and 4, similarly
to Amrit et al. (2011) but for the continuous-time case, address
the convergence properties and the performance analysis of the
closed-loop system, respectively. Design methodologies for a
suitable terminal set and terminal cost are presented in Section 5,
followed by Section 6 with some numerical examples. Section 7
closes the paperwith some conclusions. All the proofs are reported
in Appendix.
Notation. For a generic continuous-time trajectory x, the term
x([t1, t2]) denotes the trajectory considered in the time interval
[t1, t2] and x(t) the trajectory evaluated at a specific time t . The
notation x(τ ; t, z) is used whenever we want to make explicit the
dependence of x(τ ) on the optimization problem parameters t and
z. For a generic scalar function g : R≥t0 → R and time t0 wedenote
by Av[g(t), t0] the set

Av[g(t), t0] :=


lim inf
δ→+∞

 t0+δ

t0
g(t)dt

δ
, lim sup

δ→+∞

 t0+δ

t0
g(t)dt

δ


where if the limit exists, then we have Av[g(t), t0] = {limδ→+∞

1
δ t0+δ

t0
g(t)dt}. Moreover, for a generic function g : Rn

→ R, with
n being a positive integer, the terms gx(x̂) and gxx(x̂) denote the
Jacobian and the Hessian, respectively, of g(·) with respect to the
vector x ∈ Rn evaluated at x̂ ∈ Rn. For a given matrix A, λmin(A)
and λmax(A) denote the minimum and the maximum real valued
eigenvalue of A. The notation A ≻ 0 is used to denote that A is
a positive definite matrix. A function α : R≥0 → R≥0 is said to
belong to class-K∞, or to be a class-K∞ function, if it is zero at
zero, strictly increasing and radially unbounded, i.e., α(x) → ∞ as
x → ∞. For a given function g : R × Rn

→ R and scalars r and
t we denote by L(t; g, r) the r-sub-level-set L(t; g, r) := {x :

g(t, x) ≤ r} parametrized with t . For a generic set A ⊆ Rn

we denote by intA the interior of A. The generic closed ball of
radius r is denoted by B(r) := {x : ∥x∥ ≤ r}. Given two generic
continuous-time trajectories x and y we say that x asymptotically
converges to y if ∥x(t) − y(t)∥ → 0 as t → +∞. The term
PC(a, b) denotes the space of piecewise continuous trajectories
defined over [a, b]. For the sake of simplicity, the dependence on
time and parameters is dropped whenever it is clear from the
context.

2. Problem definition

Consider the continuous-time time-varying dynamical system

ẋ(t) = f (t, x(t), u(t)), x(t0) = x0, t ≥ t0 (1)

and let the state and input vectors x(t) ∈ Rn and u(t) ∈ Rm be
constrained as

(x(t), u(t)) ∈ X(t) × U(t), t ≥ t0, (2)

where the set-valued maps X : R ⇒ Rn and U : R ⇒ Rm

denote the time-varying state and input constraint sets, and t0 and
x0 = x(t0) are the initial time and state, respectively.

Definition 1 (Open-loop MPC problem). Given a pair (t, z) ∈ R≥t0
× X(t) and a horizon length T > 0, the open-loop MPC
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