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A new extended state space recursive least squares (ESSRLS) algorithm is proposed for state estimation 
of nonlinear systems. It is based on state space recursive least squares (SSRLS) approach and uses first 
order linearization of the system. It inherits the capability of obtaining state estimate without knowledge 
of process and measurement noise covariance matrices (Q and R respectively). The proposed approach is 
considered to provide new design option for scenarios where noise statistics and system dynamics vary. 
ESSRLS is initialized using delayed recursion method and a forgetting factor λ is employed to optimize 
the performance. The selection of λ can be problem specific as shown through experimental validations. 
However a value closer to and less than unity is generally recommended. Theoretical bases are validated 
by applying this algorithm to problems of tracking a non-conservative oscillator, a damped system with 
amplitude death and a signal modeled by mixture of Gaussian kernels. Simulation results show an MSE 
performance gain of 20 dB and 23 dB over extended Kalman filter (EKF) and unscented Kalman filter 
(UKF) while tracking van der Pol oscillator without knowledge about noise variances. The computational 
complexity of ESSRLS falls within that of EKF and UKF.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Signal processing and control have widespread applications 
ranging from small-scale industrial appliances to numerous re-
search areas (e.g., biomedical, navigation, mining, speech process-
ing, etc.). Their main goal remains to accomplish process control 
and provide a performance monitoring and optimization mech-
anism. State estimation plays a key role by estimating current 
state of the system, using current and past values of system in-
put and output signals. Major application categories include system 
identification, parameter estimation, inverse modeling, denoising 
and interference cancellation. A few practical examples are target 
tracking, simultaneous localization and mapping of robots, power 
systems, weather forecasting, autopilot, satellite navigation, speech 
enhancement, traffic control and ECG processing.

Approximate mathematical models for practical time varying 
systems usually suffer because of modeling uncertainties, assump-
tions, measurement uncertainties, unknown external disturbances 
and non-stationary noise sources acting on the system. In this 
scenario, utilizing a state estimation algorithm becomes the pre-
ferred choice. Both Kalman Filter (KF) and state space recursive 
least-squares (SSRLS) assist in obtaining accurate state estimates 

E-mail address: azeemirshad84@yahoo.com (A. Irshad).

for linear dynamic systems, whereby KF performs in an optimal 
fashion in minimum mean square error sense while encountering 
Gaussian noise and provides optimal least-squares estimate when 
noise distribution is unknown, whereas SSRLS does not claim opti-
mality and obtains state estimates in a least-squares sense without 
requirement of estimating process and measurement noise covari-
ance matrices (Q and R respectively) [1–3]. Performance of SSRLS 
largely depends on selection of forgetting factor (λ) which ranges 
from 0 to 1 [4].

Most physical systems are inherently nonlinear and pose a great 
challenge to state estimation. There is no optimal algorithm avail-
able in literature, however two popular variants of KF exist, known 
as EKF and UKF. In EKF, system state is propagated through a 
first order linear approximation at each time instant. Higher order 
EKFs and iterated EKF are used to reduce first order linearization 
error where situation permits [2]. UKF is based upon unscented 
transform and performs accurately up to second order in estimat-
ing mean and variance of system state distribution. Square root 
UKF is utilized to resolve divergence issues associated with UKF 
[5–7].

The accurate estimation of Q and R is vital in ensuring con-
vergence and accuracy of estimates in EKF and UKF [2,8,9]. There 
is no state of the art mechanism available for their estimation, 
usually diagonal matrices are assumed and diagonal entries are 
estimated using available observations and known modeling inac-
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curacies. Practical scenarios may arise where estimation of diag-
onal entries is not possible. Capturing non-stationarity of process 
and measurement noise in Q and R is difficult. Inaccurate esti-
mation leads to poor performance [5,8,10]. Different variants of 
these two filters have been proposed and compared in literature 
in this context [6,11–13]. Wu et al. presented a self-adaptive UKF 
specific for underwater navigation [14]. Hu et al. [15] applied the 
idea of adaptive memory on KF to adaptively adjust forgetting fac-
tors under condition of optimality. Further variants are developed 
utilizing maximum-likelihood estimation, fuzzy logic techniques 
for estimating noise statistics and updating process noise covari-
ance matrices online [16–19]. Iterated UKF proposed for structural 
system identification is more robust but it still relies on similar 
techniques to evaluate Q and R [20]. Robust UKF tries to reduce 
estimation error in presence of model uncertainties [21]. Never-
theless all these variants in some way or the other require a priori
estimation of noise distribution and considerable increase in com-
putational complexity is also noted.

Another approach in this regard has been developed using ker-
nel methodology [22]. Liu presented kernel version of extended 
recursive least squares (Ex-RLS) [2] algorithm known as Extended 
kernel recursive least squares (Ex-KRLS) which is suitable for non-
linear systems with slow fading and a small variation in state [23]. 
A better approach suggested in [24] combines Ex-KRLS with vari-
ant of KF to form Ex-KRLS-KF whereby, a state space model is used 
to obtain hidden state estimates using KF and measurement model 
is updated by Ex-KRLS. Better estimation is gained at the cost of 
added computational complexity. Ref. [25] presents a different ap-
proach which does not assume a system model and instead learns 
state of nonlinear dynamic system using available measurements. 
It enhances filtering capability for non-Gaussian noise environ-
ments.

This paper presents a new algorithm for state estimation of 
nonlinear systems which is based upon SSRLS approach and uses 
first order linear approximation. It assumes an unforced system 
model with zero process noise (process noise is being dealt with 
separately in a different paper as an extension of SSRLS with 
adaptive memory (SSRLSWAM) in [26] for nonlinear systems). The 
inherited dependency of forgetting factor remains an issue and 
needs to be optimally adjusted to attain the best possible esti-
mates. A few experiments have been carried out to validate the 
algorithm, its dependence upon initial conditions, forgetting factor 
and comparison with EKF and UKF. Three different types of nonlin-
ear systems have been considered for this purpose. Computational 
complexity is also discussed in terms of time consumed by each 
function call.

Section 2 presents a review of SSRLS algorithm, derivation of 
new algorithm is carried out in Section 3; Section 4 explores the 
ability of proposed algorithm by applying it on relevant problems; 
Section 5 reviews computational complexity and in the end, find-
ings are concluded with a view to provide a new option to design-
ers for nonlinear state estimation.

2. Review of SSRLS

The state-space recursive least-squares (SSRLS) provides an im-
portant tool to estimate a wide class of deterministic signals mod-
eled by linear state-space models and corrupted by observation 
noise [4]. This algorithm assumes an unforced system model. Batch 
processed least squares state estimation forms the basis for its 
derivation. The concept of exponential forgetting factor is intro-
duced to achieve a recursive algorithm. Unlike KF, SSRLS does not 
claim optimality and attempts to obtain state estimates in least-
squares sense. It does not require Q and R . SSRLS achieves better 
tracking performance and faster convergence rate as compared to 

RLS by virtue of using an appropriate system model. Additionally, 
it can track multiple observations simultaneously while RLS can 
only track scalar random processes. System model is given as:

x[k + 1] = A[k]x[k]
y[k] = C[k]x[k] + v[k] (1)

where x ∈ Rn is state vector, y ∈ Rm is output vector and v[k]
is observation noise corrupting the measurements. A, C pair is as-
sumed to be l-step observable with invertible A. State estimate x̂[k]
given by SSRLS is:

x̂[k] = x̄[k] + K [k]ε[k] (2)

where x̄[k] = A[k]x̂[k − 1] is the predicted state estimate. Gain 
K [k] is determined by SSRLS. ε[k] is innovation signal defined 
as difference between observed output y[k] and predicted output 
ȳ[k] = C[k]x̄[k].

2.1. SSRLS observer gain

Observer gain can be computed in two different ways. One 
method involves the inversion of n × n matrix and is known as 
SSRLS form I. Gain computation is done as follows:

φ[k] = λA−T [k]φ[k − 1]A−1[k] + C T [k]C[k] (3)

K [k] = φ−1[k]C T [k] (4)

Second method, known as SSRLS form II requires the inversion of 
m × m matrix and is computationally less complex. The Riccati 
equation of SSRLS is evaluated as follows:

P [k] = λ−1 A[k]P [k − 1]AT [k]
− λ−2 A[k]P [k − 1]AT [k]C T [k]
× [I + λ−1C[k]A[k]P [k − 1]AT [k]C T [k]]−1

× C[k]A[k]P [k − 1]AT [k] (5)

Here P [k] = φ−1[k]. Observer gain is computed using (4). λ repre-
sents forgetting factor and inherits its characteristics from standard 
RLS. Although its optimal value is experimentally judged, for linear 
systems values closer to but less than unity provide better results. 
It is also termed as memory length whereby closer to unity means 
more memory [3,2]. The algorithm can be initialized using regular-
ization term or delayed recursion method [3].

3. Extended state-space recursive least-squares (ESSRLS) 
algorithm

SSRLS described above addresses the general problem of try-
ing to estimate state of a discrete-time controlled process that is 
governed by a linear stochastic difference equation. The idea is to 
extend it to nonlinear systems which will enable its application to 
a vast majority of practical problems. In something akin to a Taylor 
series, we can linearize the system around current estimate using 
partial derivatives of process and measurement functions.

3.1. Non-linear system model

We consider nonlinear discrete time system represented by

x[k] = f (x[k − 1])
y[k] = h(x[k], v[k]) (6)

where x ∈ Rn , y ∈ Rm and v[k] represents measurement noise 
with p(v) ∼ N (0, R), non-linear function f relates the state at 
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