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This paper deals with state estimation problem for linear uncertain systems with correlated noises and
incomplete measurements. Multiplicative noises enter into state and measurement equations to account
for the stochastic uncertainties. And one-step autocorrelated and cross-correlated process noises and
measurement noises are taken into consideration. Using the latest received measurement to compensate
lost packets, the modified multi-step random delays and packet dropout model is adopted in the
present paper. By augmenting system states, measurements and new defined variables, the original
system is transformed into the stochastic parameter one. On this basis, the optimal linear estimators
in the minimum variance sense are designed via projection theory. They depend on the variances of
multiplicative noises, the one-step correlation coefficient matrices together with the probabilities of
delays and packet losses. The sufficient condition on the existence of steady-state estimators is then
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given. Finally, simulation results illustrate the performance of the developed algorithms.
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1. Introduction

As is well known, if the system model under consideration is
exactly known, Kalman filter is an optimal filter in the minimum
variance sense for linear systems [1]. Under different hypotheses
on the processes involved in the observation equation, correspond-
ing algorithms have been proposed, such as Unscented Kalman
filter, Extended Kalman filter, Particle filter and so on [2]. How-
ever, in the network environment, the standard observation model
becomes inappropriate due to the existence of network-induced
uncertainties like packet dropouts, transmission delays, missing
measurements, and/or disorder. Accordingly, modeling the observa-
tion process is vitally important to the filtering or state estimation
problem for the networked control systems (NCSs).

Studies on filtering or state estimation with one or two, even
three network-induced uncertainties have attracted considerable
attention in the past few decades. For instance, using an in-
novation analysis approach, [3]| presented the optimal linear es-
timators for the systems with multiple packet dropouts. Given
measurements transmitted by different sensors subject to ran-
dom packet dropouts, [4] discussed least-squares linear estimation
problem using covariance information. For random delayed sys-
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tems, the optimal and suboptimal estimators [5] and recursive fil-
tering and smoothing algorithms [6] were proposed. Taking packet
dropouts, missing measurements as well as random measurement
delays into account, [7] designed adaptive filtering schemes. Differ-
ently from the aforementioned observation models, [8] developed
a model to describe multi-step transmission delays and packet
dropouts by introducing some Bernoulli distributed random vari-
ables. Then, the optimal linear estimators for single sensor were
derived. Based on the novel model in [8], [9,10] developed corre-
sponding estimation algorithms for different systems. To be spe-
cific, [9] extended the results in [8] to the multi-sensor distributed
case, and derived a distributed fusion filter. By means of the re-
organized innovation approach, [10] investigated the optimal es-
timator for the linear systems with and without time-stamped
data packets. However, multi-step random delays and packet losses
model used in [8-10] can result in complete loss of packets at
times, which affect the performance of proposed estimator. To
overcome this deficiency, the latest measurement transmitted suc-
cessfully can be used for the estimation. The resultant model is
described in the problem formulation section, called as the com-
pensation multi-step random delays and packet losses model, or
compensation model for short.

In many engineering applications, the process noise and mea-
surement noise are assumed to be correlated. As pointed out
in [11], the radar system is a typical example of this aspect. On this
account, a great number of estimation results concerning systems
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with correlated noises have been obtained. To mention a few, [12]
designed the optimal robust non-fragile Kalman-type recursive fil-
ter for a class of uncertain systems with finite-step autocorrelated
measurement noises and multiple packet dropouts. Compared with
the results in [12], a globally optimal filtering was proposed in [13]
by exploiting sufficiently the statistical properties of correlated
noises. Considering the correlation between the signal and the ob-
servation noise, the least-squares linear smoothing problem was
investigated in [14]. Recently, [15] has coped with the optimal
least-squares linear estimation problem, in which one-step corre-
lated and cross-correlated parameter matrices other than corre-
lated noises were considered. For the distributed filtering problem
subject to correlated noises, a distributed Kalman filtering fusion
algorithm [16], the distributed weighted robust Kalman filter [17],
and optimal sequential and distributed fusion schemes [18] were
developed, respectively.

On the other hand, parameter uncertainties inevitably exist in
the system model because of model reduction, varying parame-
ters and so on. In general, parameter uncertainties include deter-
ministic uncertainties and stochastic uncertainties. Multiplicative
noises, as we all known, are regarded as the stochastic uncer-
tainties. Hence, so far, many valuable results with respect to state
estimation for uncertain systems have been reported. Specifically,
an exact, closed-form minimum variance filter [19], the optimal
linear estimators [20] and a robust distributed state fusion Kalman
filter [21] were proposed, respectively. Merging the stochastic un-
certain terms into the process and observation noises of the orig-
inal system, a robust Kalman filter was presented in [22]. Con-
sidering the parameter uncertainties may occur in a probabilis-
tic way, [23] addressed the distributed filtering problem in terms
of linear matrix inequalities. Both deterministic uncertainties and
stochastic uncertainties being considered, [24] designed a robust
finite-horizon Kalman filter for discrete time-varying uncertain sys-
tems. Recently, [25] designed optimal linear estimators for NCSs
with stochastic uncertainties, multiple sensors and packet losses
of both sides from sensors to an estimator and from a controller
to an actuator. Although [20] and [25] derived the optimal estima-
tors for uncertain system with compensation model, but multi-step
random delay and correlated noises were not involved.

Up to now, to the best of the authors’ knowledge, the minimum
variance estimation problem for the uncertain systems with com-
pensation multi-step random delays and packet losses, one-step
autocorrelated and cross-correlated noises has not been consid-
ered yet, which motivates the present study. It should be note
that the stochastic uncertainties together with correlated noises
can bring many difficulties in designing the optimal estimators, not
to mention the challenges brought from compensation multi-step
random delays and packet losses model. Compared with the ob-
servation model adopted in [8], the compensation model in the
present paper can use the latest measurement data transmitted
successfully to compensate lost packets at some time. To trans-
form the original system into the stochastic parameterized one,
some new variables are defined. In particular, random variable pj;1
is introduced, which brings some difficulties in dealing with the
relationships among this variable, other random variables and re-
sultant stochastic coefficient matrices. Based on the stochastic pa-
rameter system, the filter, multi-step predictor and smoother are
proposed via the innovation analysis approach. The designed esti-
mators are optimal in the minimum variance sense, and consider
the effect from multiplicative noises, one-step correlated noises to-
gether with multi-step delays and packet losses. In this sense, our
work isn’t a simple generalization of some existing results. In ad-
dition, estimation algorithms developed in the current paper can
be applied to close loop control, target tracking, communications,
fault diagnosis and so on.

The organization of the paper is as follows. Section 2 gives the
problem under consideration. In Section 3, two lemmas and the
main theorems on the design of minimum-variance estimators are
provided. Furthermore, the sufficient condition on the existence of
steady-state estimators is discussed. The performance of the pro-
posed estimators is illustrated in Section 4 by a numerical example
and some conclusions are drawn in Section 5. Proofs of the results
in Section 3 are given in Appendices A-C.

Notations. Throughout the paper, the notations used are stan-
dard. R™ represents the m-dimensional Euclidean space. I;; and 0
mean the identity matrix and zero matrix with appropriate dimen-
sions, respectively. é;; denotes the Kronecker delta function, which
is equal to zero if t #1, and one if t =1. Prob(x) stands for the oc-
currence probability of the event *. E(x) is the expectation of x.
p(A) represents the spectral radius of matrix A. sym{x} denotes
%+ %7 If not explicitly stated, all matrices are assumed to be of
compatible dimensions.

2. Problem formulation

Consider the following discrete time-varying linear system with
multiplicative noises:

x(t+1) = (A®) + Za,- (OALI(D)x() + BEW(E) (1)
i=1
2(t) = (CO) + Y B®OCp s (®))X(0) + () )
k=1

where x(t) € R" is the system state, and the initial state x(0) has
mean Xp and variance Pg. z(t) € R™ is the measurement. «;(t) € R
and Bk (t) € R represent mutually uncorrelated zero-mean multi-
plicative noises with variance Qy; and Qg,, respectively. r and
s are known positive integers. w(t) € R" and v(t) € R™ are, re-
spectively, the one-step autocorrelated and cross-correlated pro-
cess noise and measurement noise. A(t), A, i(t), B(t), C(t), and
C,.k(t) are known time-varying matrices with appropriate dimen-
sions. Also, x(0) is assumed to be uncorrelated with «;(t), Bi(t),
w(t) and v(t).

The network-induced uncertainties, such as random delays and
packet losses, always occur during the measurement z(t) being
sent to the estimator. For this reason, in our present work, y(t)
received by the estimator is modeled as follows:

y(©) = po®)z(t) + (1 — po®)p1(t —Dz(t —1) +---
+ 25 = pi(t — D)t = Dz(t = 1) + paa (OY(E = 1)
(3)
where [ is the largest transmission delay, p;(t) satisfy pg(t) = no(t),
pi() = T_y(1 — mi(t + k)mi(t + (i = 1,2...1) and pq(t) =
1—=po®))A = p1t—1))...(1 = p(t = D). n;i(t) are mutually un-
correlated Bernoulli distributed random variables satisfying that
Prob{n;(t) =1} =v; and Prob{n;(t) =0} =1—v;(0 <v; <1). In ad-
dition, we assume that 7;(t) are independent of x(0), w(t), v(t),
a;(t) and B (t).

To make the compensation model (3) more understandable, a
simple demonstration of data transmission under [ = 2 is given in
Table 1, from which the main difference between the model in [8]
and model (3) can be observed.

Table 1 shows that z(1), z(2), z(4), z(9) and z(10) are received
on-time, z(5) is delayed one step, z(3) is delayed two steps, z(6),
z(7) and z(8) are lost in [8], while the lost data are respectively
compensated for by y(2), y(6) and y(7) in model (3).

Assumption 1. The process noise w(t) and the measurement noise
v(t) are one-step autocorrelated and cross-correlated noises, which
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