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This paper deals with state estimation problem for linear uncertain systems with correlated noises and 
incomplete measurements. Multiplicative noises enter into state and measurement equations to account 
for the stochastic uncertainties. And one-step autocorrelated and cross-correlated process noises and 
measurement noises are taken into consideration. Using the latest received measurement to compensate 
lost packets, the modified multi-step random delays and packet dropout model is adopted in the 
present paper. By augmenting system states, measurements and new defined variables, the original 
system is transformed into the stochastic parameter one. On this basis, the optimal linear estimators 
in the minimum variance sense are designed via projection theory. They depend on the variances of 
multiplicative noises, the one-step correlation coefficient matrices together with the probabilities of 
delays and packet losses. The sufficient condition on the existence of steady-state estimators is then 
given. Finally, simulation results illustrate the performance of the developed algorithms.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

As is well known, if the system model under consideration is 
exactly known, Kalman filter is an optimal filter in the minimum 
variance sense for linear systems [1]. Under different hypotheses 
on the processes involved in the observation equation, correspond-
ing algorithms have been proposed, such as Unscented Kalman 
filter, Extended Kalman filter, Particle filter and so on [2]. How-
ever, in the network environment, the standard observation model 
becomes inappropriate due to the existence of network-induced 
uncertainties like packet dropouts, transmission delays, missing 
measurements, and/or disorder. Accordingly, modeling the observa-
tion process is vitally important to the filtering or state estimation 
problem for the networked control systems (NCSs).

Studies on filtering or state estimation with one or two, even 
three network-induced uncertainties have attracted considerable 
attention in the past few decades. For instance, using an in-
novation analysis approach, [3] presented the optimal linear es-
timators for the systems with multiple packet dropouts. Given 
measurements transmitted by different sensors subject to ran-
dom packet dropouts, [4] discussed least-squares linear estimation 
problem using covariance information. For random delayed sys-
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tems, the optimal and suboptimal estimators [5] and recursive fil-
tering and smoothing algorithms [6] were proposed. Taking packet 
dropouts, missing measurements as well as random measurement 
delays into account, [7] designed adaptive filtering schemes. Differ-
ently from the aforementioned observation models, [8] developed 
a model to describe multi-step transmission delays and packet 
dropouts by introducing some Bernoulli distributed random vari-
ables. Then, the optimal linear estimators for single sensor were 
derived. Based on the novel model in [8], [9,10] developed corre-
sponding estimation algorithms for different systems. To be spe-
cific, [9] extended the results in [8] to the multi-sensor distributed 
case, and derived a distributed fusion filter. By means of the re-
organized innovation approach, [10] investigated the optimal es-
timator for the linear systems with and without time-stamped 
data packets. However, multi-step random delays and packet losses 
model used in [8–10] can result in complete loss of packets at 
times, which affect the performance of proposed estimator. To 
overcome this deficiency, the latest measurement transmitted suc-
cessfully can be used for the estimation. The resultant model is 
described in the problem formulation section, called as the com-
pensation multi-step random delays and packet losses model, or 
compensation model for short.

In many engineering applications, the process noise and mea-
surement noise are assumed to be correlated. As pointed out 
in [11], the radar system is a typical example of this aspect. On this 
account, a great number of estimation results concerning systems 
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with correlated noises have been obtained. To mention a few, [12]
designed the optimal robust non-fragile Kalman-type recursive fil-
ter for a class of uncertain systems with finite-step autocorrelated 
measurement noises and multiple packet dropouts. Compared with 
the results in [12], a globally optimal filtering was proposed in [13]
by exploiting sufficiently the statistical properties of correlated 
noises. Considering the correlation between the signal and the ob-
servation noise, the least-squares linear smoothing problem was 
investigated in [14]. Recently, [15] has coped with the optimal 
least-squares linear estimation problem, in which one-step corre-
lated and cross-correlated parameter matrices other than corre-
lated noises were considered. For the distributed filtering problem 
subject to correlated noises, a distributed Kalman filtering fusion 
algorithm [16], the distributed weighted robust Kalman filter [17], 
and optimal sequential and distributed fusion schemes [18] were 
developed, respectively.

On the other hand, parameter uncertainties inevitably exist in 
the system model because of model reduction, varying parame-
ters and so on. In general, parameter uncertainties include deter-
ministic uncertainties and stochastic uncertainties. Multiplicative 
noises, as we all known, are regarded as the stochastic uncer-
tainties. Hence, so far, many valuable results with respect to state 
estimation for uncertain systems have been reported. Specifically, 
an exact, closed-form minimum variance filter [19], the optimal 
linear estimators [20] and a robust distributed state fusion Kalman 
filter [21] were proposed, respectively. Merging the stochastic un-
certain terms into the process and observation noises of the orig-
inal system, a robust Kalman filter was presented in [22]. Con-
sidering the parameter uncertainties may occur in a probabilis-
tic way, [23] addressed the distributed filtering problem in terms 
of linear matrix inequalities. Both deterministic uncertainties and 
stochastic uncertainties being considered, [24] designed a robust 
finite-horizon Kalman filter for discrete time-varying uncertain sys-
tems. Recently, [25] designed optimal linear estimators for NCSs 
with stochastic uncertainties, multiple sensors and packet losses 
of both sides from sensors to an estimator and from a controller 
to an actuator. Although [20] and [25] derived the optimal estima-
tors for uncertain system with compensation model, but multi-step 
random delay and correlated noises were not involved.

Up to now, to the best of the authors’ knowledge, the minimum 
variance estimation problem for the uncertain systems with com-
pensation multi-step random delays and packet losses, one-step 
autocorrelated and cross-correlated noises has not been consid-
ered yet, which motivates the present study. It should be note 
that the stochastic uncertainties together with correlated noises 
can bring many difficulties in designing the optimal estimators, not 
to mention the challenges brought from compensation multi-step 
random delays and packet losses model. Compared with the ob-
servation model adopted in [8], the compensation model in the 
present paper can use the latest measurement data transmitted 
successfully to compensate lost packets at some time. To trans-
form the original system into the stochastic parameterized one, 
some new variables are defined. In particular, random variable ρl+1
is introduced, which brings some difficulties in dealing with the 
relationships among this variable, other random variables and re-
sultant stochastic coefficient matrices. Based on the stochastic pa-
rameter system, the filter, multi-step predictor and smoother are 
proposed via the innovation analysis approach. The designed esti-
mators are optimal in the minimum variance sense, and consider 
the effect from multiplicative noises, one-step correlated noises to-
gether with multi-step delays and packet losses. In this sense, our 
work isn’t a simple generalization of some existing results. In ad-
dition, estimation algorithms developed in the current paper can 
be applied to close loop control, target tracking, communications, 
fault diagnosis and so on.

The organization of the paper is as follows. Section 2 gives the 
problem under consideration. In Section 3, two lemmas and the 
main theorems on the design of minimum-variance estimators are 
provided. Furthermore, the sufficient condition on the existence of 
steady-state estimators is discussed. The performance of the pro-
posed estimators is illustrated in Section 4 by a numerical example 
and some conclusions are drawn in Section 5. Proofs of the results 
in Section 3 are given in Appendices A–C.

Notations. Throughout the paper, the notations used are stan-
dard. Rm represents the m-dimensional Euclidean space. Im and 0
mean the identity matrix and zero matrix with appropriate dimen-
sions, respectively. δt,l denotes the Kronecker delta function, which 
is equal to zero if t �= l, and one if t = l. Prob(∗) stands for the oc-
currence probability of the event ∗. E(x) is the expectation of x. 
ρ(A) represents the spectral radius of matrix A. sym{∗} denotes 
∗ + ∗T . If not explicitly stated, all matrices are assumed to be of 
compatible dimensions.

2. Problem formulation

Consider the following discrete time-varying linear system with 
multiplicative noises:

x(t + 1) = (
A(t) +

r∑
i=1

αi(t)Aμ,i(t)
)
x(t) + B(t)w(t) (1)

z(t) = (
C(t) +

s∑
k=1

βk(t)Cμ,k(t)
)
x(t) + v(t) (2)

where x(t) ∈ Rn is the system state, and the initial state x(0) has 
mean x̄0 and variance P0. z(t) ∈ Rm is the measurement. αi(t) ∈ R
and βk(t) ∈ R represent mutually uncorrelated zero-mean multi-
plicative noises with variance Q αi and Q βk , respectively. r and 
s are known positive integers. w(t) ∈ Rh and v(t) ∈ Rm are, re-
spectively, the one-step autocorrelated and cross-correlated pro-
cess noise and measurement noise. A(t), Aμ,i(t), B(t), C(t), and 
Cμ,k(t) are known time-varying matrices with appropriate dimen-
sions. Also, x(0) is assumed to be uncorrelated with αi(t), βk(t), 
w(t) and v(t).

The network-induced uncertainties, such as random delays and 
packet losses, always occur during the measurement z(t) being 
sent to the estimator. For this reason, in our present work, y(t)
received by the estimator is modeled as follows:

y(t) = ρ0(t)z(t) + (1 − ρ0(t))ρ1(t − 1)z(t − 1) + · · ·
+ �l−1

i=0(1 − ρi(t − i))ρl(t − l)z(t − l) + ρl+1(t)y(t − 1)

(3)

where l is the largest transmission delay, ρi(t) satisfy ρ0(t) = η0(t), 
ρi(t) = �i−1

k=0(1 − ηk(t + k))ηi(t + i)(i = 1, 2 . . . l) and ρl+1(t) =
(1 − ρ0(t))(1 − ρ1(t − 1)) . . . (1 − ρl(t − l)). ηi(t) are mutually un-
correlated Bernoulli distributed random variables satisfying that 
Prob{ηi(t) = 1} = νi and Prob{ηi(t) = 0} = 1 − νi(0 ≤ νi ≤ 1). In ad-
dition, we assume that ηi(t) are independent of x(0), w(t), v(t), 
αi(t) and βk(t).

To make the compensation model (3) more understandable, a 
simple demonstration of data transmission under l = 2 is given in 
Table 1, from which the main difference between the model in [8]
and model (3) can be observed.

Table 1 shows that z(1), z(2), z(4), z(9) and z(10) are received 
on-time, z(5) is delayed one step, z(3) is delayed two steps, z(6), 
z(7) and z(8) are lost in [8], while the lost data are respectively 
compensated for by y(2), y(6) and y(7) in model (3).

Assumption 1. The process noise w(t) and the measurement noise 
v(t) are one-step autocorrelated and cross-correlated noises, which 
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