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a b s t r a c t

In this paper, we focus on the robustness and fragility problem for piecewise affine (PWA) control laws
for discrete-time linear system dynamics in the presence of parametric uncertainty of the state space
model. A generic geometrical approach will be used to obtain robustness/fragility margins with respect
to the positive invariance properties. For PWA control laws defined over a bounded region in the state
space, it is shown that these margins can be described in terms of polyhedral sets in parameter space.
The methodology is further extended to the fragility problem with respect to the partition defining
the controller. Finally, several computational aspects are presented regarding the transformation from
the theoretical formulations to explicit representations (vertex/halfspace representation of polytopes) of
these sets.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

When analyzing a control law, both practitioner and theoreti-
cian take into account the capacity to cope with disturbances and
model uncertainties. This characteristic is classically denoted in
control theory as robustness. The presence of additive disturbances
in the control system structure is due to measurement noises and
external perturbation sources. Otherwise, the uncertainty stems
frommodel reduction, linearization of nonlinear elements, imper-
fect mathematical model or partial information on the parame-
ters. These elements are unavoidable in the control design by the
essence of their causes and the practical need of complexity reduc-
tion in model-based design, and as a consequence the robustness
consideration of the closed-loop is necessary.

✩ The material in this paper was presented at the 13th European Control
Conference, June 24-27, 2014, Strasbourg, France. This paper was recommended for
publication in revised formbyAssociate Editor RichardD. Braatz under the direction
of Editor Richard Middleton.
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This study concentrates on the robustness problem in the
presence of model uncertainty for PWA control laws. It is known
that in closed loop this class of controllers leads to a hybrid
system formulation (Heemels, De Schutter, & Bemporad, 2001).
Another motivation for the study of the PWA controllers and their
robustness is the recent interest in the optimization-based design
via parametric convex programming (Bemporad, Morari, Dua, &
Pistikopoulos, 2002; Nguyen, Gutman, Olaru, & Hovd, 2013; Olaru
& Dumur, 2004; Seron, Goodwin, & Doná, 2003; Tøndel, Johansen,
& Bemporad, 2003) or the approximate explicit solutions in Model
Predictive Control (MPC) (Johansen & Grancharova, 2003). Various
types of uncertainties exist, in this paper, our interest is in
parametric uncertainties, understood as variations of coefficients
of amodelwith a pre-imposed structure. Unstructured uncertainty
will generally lead to an augmented state space and the extension
of a predefined controller leads to nonuniqueness and relatedwell-
posedness problems which are beyond the scope of this study.

At the same time, from the practical point of view, the imple-
mentation of control laws in general leads to numerical round-offs.
Thismay affect closed-loop stability. Themaximal admissible set of
numerical errors, forwhich the implemented control law still guar-
antees the stability, is denoted as the fragility margin. This problem
has already been investigated in literature (Dorato, 1998; Keel &
Bhattacharyya, 1997), but these studies neither provide a construc-
tive procedure to compute such a margin, nor cover our interests

http://dx.doi.org/10.1016/j.automatica.2015.10.048
0005-1098/© 2015 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.automatica.2015.10.048
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2015.10.048&domain=pdf
mailto:Ngocanh.Nguyen@supelec.fr
mailto:Sorin.Olaru@supelec.fr
mailto:Pedro.Rodriguez-Ayerbe@supelec.fr
mailto:bitsoris@ece.upatras.gr
mailto:morten.hovd@itk.ntnu.no
http://dx.doi.org/10.1016/j.automatica.2015.10.048


N.A. Nguyen et al. / Automatica 68 (2016) 334–343 335

in the class of PWA control laws. As far as it concerns the fragility
margin of PWA control laws, we will refer to the possible inaccu-
racy in the coefficients of the PWA controllers without assuming
any uncertainty on the state space partition. Perturbations in the
region description will lead to overlapping regions in the partition
with implications on non-uniqueness of the trajectories. All these
aspects are addressed for the first time in the literature to our best
knowledge.

Based on the preliminary results in Olaru, Nguyen, Bitsoris,
Rodriguez-Ayerbe, and Hovd (2013); Nguyen, Olaru, Bitsoris,
Rodriguez-Ayerbe, and Hovd (2014), this paper provides a
theoretical framework and mathematical computation for the
explicit robustness/fragility margins of a discrete-time linear
system, controlled by a given PWA control law. The methodology
is centered around the robust positive invariance properties which
have been studied since the late ’80s (Bitsoris, 1988; Blanchini,
1999; Blanchini &Miani, 2008; Vassilaki, Hennet, & Bitsoris, 1988).
Note that the robust positive invariance is associated with robust
stability since the trajectories are kept inside a subset of the
state space, namely a positively invariant set. Guaranteeing robust
asymptotic stability is beyond the scope of this paper. Based on
the same constructive principle, the problem of finding the biggest
set of errors in the description of the regions of the given state
space polyhedral partition is also tackled in this study. The main
contribution of this paper is to provide a conceptual advance on
the determination of the robustness and fragility margins for a
PWA controller and a linear system. Aside from this theoretical
aspect, for explicit computations of these margins, computational
aspects will also be discussed. These computational aspects rely
on vertex/facet enumerations and become expensive once the
number of critical regions and dimension increases. However, part
of the analysis is independent for each region. Also, all these
computations are carried out offline, at the design stage. Therefore,
it is reasonable to assume that ample computational power, time
and memory are available, making computations of substantial
complexity acceptable. This situation is in stark contrast to the
online controller computations which typically will be performed
under strict real time requirements on low cost computational
hardware.

Unlike the robust explicit controllers designswhich a priori take
robustness into account (Kerrigan&Maciejowski, 2004; Kouramas,
Panos, Faísca, & Pistikopoulos, 2013; Nguyen, Olaru, & Rodriguez-
Ayerbe, 2015), themethod presented here allows one to evaluate a
posteriori the robustness/fragility margins for a given PWA control
law. A link can be made between analysis and control design if the
fragility/robustness margin is used for retuning PWA controllers
to cope with uncertainties while guaranteeing robust positive
invariance. However, the robust asymptotic stability should be
further elaborated in this case.

Notation and basic definitions

Throughout the paper, R, R+, N and N+ denote the field of real
numbers, the set of nonnegative real numbers, the set of non-
negative integers, the set of positive integer numbers, respectively.
For two column vectors: x, y ∈ Rn, x = [x1 x2 . . . xn]T , y =

[y1 y2 . . . yn]T , the partial order relation x ≤ y is equivalent
to xi ≤ yi, ∀i = 1, . . . , n. A vector with its elements equal
to one (zero) is denoted by 1 (0) or by 1n (0n) in case the
dimension n must be explicitly stated. Similarly, I denotes an
identity matrix of appropriate dimension, with a subscript when
the dimension of this matrix needs to be specified i.e. In means
I ∈ Rn×n. For a matrix A ∈ Rm×n, then vec(A) represents the
vector composed of the columns of matrix A as follows: vec(A) :=
A(·, 1)T · · · A(·, n)T

T , where A(·, i) denotes the ith column of

matrix A. Given two matrices A ∈ Rm×n, B ∈ Rp×q, their Kronecker
tensor product, denoted by A ⊗ B ∈ Rmp×nq, is defined as:

A ⊗ B :=

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 .

For an arbitrary set S ⊆ Rn, int(S) denotes the interior of
S. By dim(S), we denote the dimension of its affine hull. V(S)
describes the set of vertices whenever S is a polytope (bounded
polyhedral set). If S ⊂ Rn is composed of a finite number of
vectors S = {s1, s2, . . . , sm}, then [S] denotes a matrix for which
the columns are the elements of S in an arbitrary order: [S] =
s1 s2 · · · sm


. Moreover, by conv(S), we denote the convex

hull of S. Given a map f : Rm
→ Rn and a set S ⊂ Rm, f (S) =

{y ∈ Rn
| ∃x ∈ S such that y = f (x)} denotes the image of the set

S via the mapping f . For a linear map f (x) = Ax with A ∈ Rn×m,
the image of a set S ⊂ Rm is briefly rewritten as f (S) = AS. The
Minkowski sum of two sets P1 and P2, denoted as P1⊕P2, is defined
as follows:

P1 ⊕ P2 := {y | ∃x1 ∈ P1, x2 ∈ P2 such that y = x1 + x2} .

The unit simplex in RL is defined as

SL =

x ∈ RL

+
| 1T

L x = 1

. (1)

Finally, for an N ∈ N+, IN denotes the set of integers: IN :=

{i ∈ N+ | i ≤ N}.

2. Preliminaries

In this section, some basic notions related to the piecewise
affine control functions and the discrete dynamics will be intro-
duced to facilitate the problem formulation and the presentation
of the main results of the paper.

Definition 2.1. A set of N ∈ N+ full-dimensional polyhedra Xi ⊂

Rn, i.e. PN(X) = {X1, X2, . . . , XN} is called a polyhedral partition
of a polyhedron X ⊆ Rn if:

(1)


i∈IN
Xi = X.

(2) int(Xi)


int(Xj) = ∅ with i ≠ j, (i, j) ∈ I2
N .

Also, (Xi, Xj) are called neighbors if (i, j) ∈ I2
N , i ≠ j and dim(Xi∩

Xj) = n−1. If X is a polytope, we call PN(X) a polytopic partition.

Definition 2.2. A function fpwa : X → Rm defined over a
polyhedral partition PN(X) of the polyhedron X by the relation
fpwa(x) = Aix + ai for x ∈ Xi, i ∈ IN , with Ai ∈ Rm×n, ai ∈ Rm, is
said to be a piecewise affine function over PN(X).

In this paper, we consider discrete linear time-invariant (LTI)
systems described by state equations:

xk+1 = Axk + Buk, (2)

where x ∈ Rn represents the state vector, u ∈ Rm denotes the
control input, A ∈ Rn×n and B ∈ Rn×m.

If the control action is synthesized in terms of a PWA
state feedback defined over a polyhedral partition PN(X) of a
polyhedron X ⊆ Rn then it will be described by

u(xk) = fpwa(xk) = Gixk + gi for xk ∈ Xi, i ∈ IN , (3)

with Gi ∈ Rm×n and gi ∈ Rm. With this control law, the resulting
closed-loop system (2)–(3) is a piecewise affine system described
by the state equation:

xk+1 = (A + BGi)xk + Bgi for xk ∈ Xi. (4)
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