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In this paper, we consider the parameters estimation of a model of superimposed exponential signals 
in multiplicative and additive noise when some observations are missing randomly. The least squares 
estimators (LSEs) and asymptotic Cramer–Rao low bound (ACRLB) for the considered model are studied 
and the asymptotic distributions of the LSEs for parameters of frequencies, phases and amplitudes of 
the considered model are also derived and obtained. An adaptive and computationally efficient iterative 
algorithm is proposed to estimate the frequencies of the considered model. It can be seen that the 
iterative algorithm works quite well in terms of biases and mean squared errors and the refined 
estimators by three iterations are observed to be asymptotically unbiased and consistent. The statistics 
for iteration are designed to change adaptively according to different missing distributions of time points 
so as to keep the estimators of frequencies to be asymptotically unbiased. Moreover, the proposed 
estimators attain the same convergence rate and asymptotic distribution as those of LSEs which are 
used to obtain the confident intervals and coverage probabilities of the frequencies for finite sample. 
Since the iterative algorithm needs only three iterations to work, it saves much computation time. So the 
proposed estimators are LSEs equivalent while avoid the heavy computation cost of LSEs. Finally, several 
simulation experiments are performed to verify the effectiveness of the proposed algorithm. To examine 
the robustness of the proposed algorithm, we also test the algorithm on the dual tone multi-frequency 
(DTMF) signal with observations missing in block and symmetric α-stable (SaS) noise condition, as well 
as on sinusoidal frequency modulated signals.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

We consider the following model of superimposed exponential 
signals in multiplicative and additive noise

y(t) = x(t)s(t),

x(t) =
l∑

k=1

ξk(t)ei(ωkt+ϕk) + ε(t), t = 1,2, · · · , N (1)

where i = √−1, the ωk ’s and ϕk ’s are unknown frequencies and 
phases lying strictly between 0 and 2π and they are distinct. 
Multiplicative noise {ξk(t)} is a sequence of independent identi-
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cally distributed (i.i.d.) real random variables with mean μk �= 0
and finite variance σ 2

k (k = 1, 2, · · · , l). Additive noise {ε(t)} is a 
sequence of i.i.d. complex random variables with zero mean and 
finite variance σ 2

0 /2 for both the real and imaginary parts which 
are assumed to be independent. The multiplicative and additive 
noise are mutually independent. {s(t)} is a sequence of i.i.d. ran-
dom variable with 0–1 distribution where P {s(t) = 0} = p denotes
the missing probability at each time point. The number of the sig-
nal ‘l’, the missing rate ‘p’ and the missing time point for each 
missing observation are assumed to be known in advance. It is 
known that the frequencies are nonlinear and also the most im-
portant parameters of the considered model. The other parameters 
can be estimated by a linear regression process once the frequen-
cies are estimated correctly [1]. In this paper, we will first study 
the LSEs of the parameters of frequencies, amplitudes and phases 
for the considered model (1). Then we will mainly focus on the 
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estimation of frequencies ωk ’s, given a sample of size N , namely 
{y(t)}t∈IN where IN is the set of observations available.

This is an important problem in statistical signal processing 
and time series analysis. In the last twenty years a lot of iterative 
and non-iterative procedures were devised for uniformly sampled 
complete data sequences [1–3]. However, in many practical appli-
cations, the measured data may be incomplete due to, for example, 
sensor failures, outliers and the data compression needs, etc. In as-
tronomical, meteorological, or satellite based applications, weather 
or other conditions may disturb sample taking schemes (e.g., mea-
surements are only available during nighttime for astronomical 
applications), which will result in missing or gapped data [4]. Miss-
ing data problems are also encountered in modern radar systems 
which have multiple duties including searching, tracking and the 
automatic classification of targets. Switching in and out of these 
modes leads to incomplete phase history data for synthetic aper-
ture radar (SAR) imaging [5]. For foliage penetrating radar sys-
tems, certain radar operating frequency bands are under strong 
electromagnetic or radio frequency (RF) interference so that the 
corresponding observations must be discarded resulting in missing 
data [6].

Several methods are devised to obtain the spectra estimation 
of the observed signals, which can also be used to estimate the 
frequencies for the periodic signals. These methods can be clas-
sified into two categories. The first one is based on interpolation 
for the missing observations and the second one does not rely 
on interpolation. Quite a few techniques are proposed without 
interpolation. The Lomb periodogram is developed for irregularly 
sampled (unevenly spaced) data as well as data with missing ob-
servations [7,8]. The CLEAN algorithm [9] is used to estimate the 
spectrum by deconvolving the missing data discrete Fourier trans-
form (DFT) spectrum into the true signal spectrum and the Fourier 
transform of the windowing function via an iterative approach. 
The multi-taper methods [10] compute spectral estimates by as-
suming certain quadratic functions of the available data. The co-
efficients in the corresponding quadratic functions are optimized 
according to certain criteria. These methods have nearly the same 
resolution as the DFT. To achieve high resolution, several para-
metric algorithms, e.g., those based on autoregressive (AR) or au-
toregressive moving-average (ARMA) models, were used to han-
dle the missing data problem [11–13]. However, these techniques 
are all based on the noise free model and are sensitive to the 
noise. For the non-interpolation methods, the missing observations 
are reconstructed and the spectra density is estimated from the 
reconstructed uninterrupted signal. A simple reconstruction uses 
linear, cubic, or spline interpolation of the missing data points. 
The best reconstruction method, however, was derived from the 
EM algorithm for missing data [14,15] where the missing data 
are reconstructed with a dynamic model. The parameters of the 
model are updated from the reconstructed uninterrupted signal, 
and the reconstruction is repeated with the new parameters un-
til convergence. Several nonparametric and adaptive filtering based 
techniques have also been developed for the missing data problem. 
In [4] and [16], an extension of the amplitude and phase estima-
tion (APES) method was used to the case of gapped data which 
iteratively interpolates the missing data and estimates the spec-
trum. In [17], the APES and Capon spectral estimators were applied 
to periodically gapped data to obtain the PG-APES and PG-CAPON 
algorithms. However, these adaptive filtering based methods can 
only deal with missing data occurring in gaps and do not work 
well for the more general problem of missing data occurring ran-
domly. Although the methods based on spectral estimation can 
also be used to estimate the frequencies of the model, they are not 
devised specifically for parameters estimation and some of them 
are even biased such as periodogram estimation and multitaper 
spectrum estimation [18]. Moreover, since the parameters estima-

tion by spectral estimation are obtained by searching the peak of 
the spectra, the precision and convergence rate of the algorithm 
are limited. Few works are focused on the parameters estima-
tion of superimposed exponential signals or harmonic signals with 
missing observations, especially when the observations are miss-
ing randomly. An information theoretic criterion and eigenvariation 
technique were used in [19] to estimate the number and the fre-
quency of the signal simultaneously and the strong convergence 
of the estimator was obtained. [20] used linear prediction and 
weighted least squares techniques to estimate the frequencies of 
the signals with gapped data. However, the linear prediction tech-
niques used in [19] and [20] are both based on noise free model 
and are sensitive to noise and the methods proposed in [20] can 
only be used for gapped data and cannot be used for the condition 
of randomly missing observations.

Recently, an iterative algorithm was proposed in [21] to es-
timate the frequencies of superimposed exponential signals in 
additive noise. [22] and [23] generalized the iterative procedure 
for zero-mean multiplicative noise condition and two-dimensional 
condition respectively. The iterative algorithm proposed in [21–23]
can converge within fixed number of iterations and the corre-
sponding estimators attain the same convergence rate as that of 
LSEs, thus is LSEs equivalent and computationally efficient. But 
nowhere, at least not known to the authors, are the LSEs and the 
iterative procedure for the LSEs of the frequencies for a super-
imposed exponential model with multiplicative and additive noise 
and observations missing randomly considered. It will be very ap-
pealing if the iterative procedure can be used for the missing 
observations condition and is LSEs equivalent at the same time. 
However, the iterative statistics and the corresponding iterative 
coefficients in [21–23] are based on continuous time series and 
cannot be used for missing observations condition directly. More-
over, the LSEs for the randomly missing observations condition of 
model (1) cannot be established directly on the LSEs for com-
plete data of multiplicative and additive noise condition [24]. In 
this paper, firstly, we study the LSEs as well as the corresponding 
asymptotic distribution of frequencies, phases and amplitudes for 
the considered model (1), then an adaptively iterative procedure is 
proposed to estimate the frequencies of model (1) under the in-
spiration of the works of [21–23]. The coefficient in the iterative 
term is devised to change according to the variation of the time 
point distribution of the missing observations. It can be proved 
that the precision and the convergence rate of the estimators will 
be improved after each iteration and the estimators can attain the 
same convergence rate as that of LSEs after only three iterations 
while have the same asymptotic distribution as that of LSEs un-
der the same condition. The iterative procedure uses a correction 
term based on AN ( j) and B N( j) to be defined in Section 4, which 
are functions of the data vector and the j-th available frequency 
estimator. It is observed that if the initial estimator is accurate 
up to the order O p(N−1) (here O p(N−δ) means O p(N−δ)Nδ is 
bounded in probability1), then the iterative procedure produces 
fully efficient frequency estimator which has convergence rate of 
O p(N−3/2). The Lomb periodogram maximizers over Fourier fre-
quencies are taken as the initial estimators of frequencies for the 
iterative algorithm. It is known that the Lomb periodogram max-
imizers over Fourier frequencies do not generally provide estima-
tors up to the order O p(N−1) [25]. To overcome this problem, we 
use the varying sample size technique as in [21], i.e., we do not 
use the fixed sample size available for estimation at each step. At 
the first step, we use a fraction of it and at the last step we use the 
whole data set by gradually increasing the effective sample size.

1 Here bounded in probability means that ∃ constant C > 0, s.t. 
limN→∞ P {|O p(N−δ)Nδ | < C} = 1.
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