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This paper studies the use of fast and exact unidimensional L2–L1 minimization as a line search for 
accelerating iterative reconstruction algorithms. In L2–L1 minimization reconstruction problems, the 
squared Euclidean, or L2 norm, measures signal-data discrepancy and the L1 norm stands for a sparsity 
preserving regularization term. Functionals as these arise in important applications such as compressed 
sensing and deconvolution. Optimal unidimensional L2–L1 minimization has only recently been studied 
by Li and Osher for denoising problems and by Wen et al. for line search. A fast L2–L1 optimization 
procedure can be adapted for line search and used in iterative algorithms, improving convergence speed 
with little increase in computational cost. This paper proposes a new method for exact L2–L1 line search 
and compares it with the Li and Osher’s, Wen et al.’s, as well as with a standard line search algorithm, 
the method of false position. The use of the proposed line search improves convergence speed of different 
iterative algorithms for L2–L1 reconstruction such as iterative shrinkage, iteratively reweighted least 
squares, and nonlinear conjugate gradient. This assertion is validated experimentally in applications to 
signal reconstruction in compressed sensing and sparse signal deblurring.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Line search is an important accelerating step for many multi-
dimensional optimization methods [1,2]. Since a significant group 
of iterative reconstruction algorithms are based on optimization 
methods [3–5], a nonexpensive line search can be readily added 
to improve their performance. In general, the line search step can 
be described as:

αk = arg min
α

�(fk + αdk), (1)

where �(f) is the multidimensional cost function to be minimized, 
fk is the current estimate or solution at iteration k, dk is a search 
direction, normally pointing to a lower value of the cost function, 
and α is the step size, a complementary information needed to 
move the current solution to a better new one, fk+1 = fk + αkdk , 
with a lower value of �(f). Generally, α > 0. Most optimization 
algorithms follow this recipe, with some common examples being 
the classical steepest descent (SD) and conjugate gradient (CG) [1].
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Another group of algorithms follows a fixed point iteration 
scheme, which has the form fk+1 = F (fk), and can also be ex-
pressed as fk+1 = fk + (F (fk) − fk). This last expression suggests a 
search direction given by dk = (F (fk) − fk). In this case, no search 
is usually performed and αk = 1. Examples of such methods are: 
iteratively reweighted least squares (IRLS) [6,7] as well as some it-
erative shrinkage algorithms (ISA) [3,8].

The step size αk in (1) should essentially guarantee the conver-
gence of the algorithm, sufficiently reducing the value of the cost 
function. For some algorithms, choosing the exact minimum point, 
instead of an approximation along the search direction, compen-
sates for the additional computational cost per iteration of the line 
search. If the cost to find the minimum point is relatively low, then 
it may accelerate the whole algorithm, reducing the total number 
of iterations for convergence, as noted in [8].

Some successful examples in the field of signal reconstruction 
techniques are the minimum of quadratic cost functions (least 
squares problems) [1] and of absolute value functions (least abso-
lute problems) [9,10], where the optimal step is easily computed. 
For quadratic problems, the optimal step is a standard part of 
the steepest descent and (linear) conjugate gradient algorithms 
[1,5]. For pure L1 problems, the optimal step is calculated using 
a weighted median [10], which may cost slightly more than the 
least squares step (that can be computed as a weighted mean), 
though still overall advantageous.
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A problem of great interest for the signal reconstruction com-
munity is the combination of L2 and L1 norms in the cost function, 
i.e:

f∗ = arg min
f

�(f), (2)

with

�(f) = 1

2
‖g − Hf‖2

2 + λ‖Rf‖1, (3)

where ‖y‖2
2 = ∑M

j=1 |y j |2 is the squared L2 norm and ‖x‖1 =∑N
i=1 |xi | is the L1 norm. H is the system matrix, of size M × P , g

is the captured data, ordered in an M × 1 vector, f is the signal to 
be estimated, in a P × 1 vector, and R is the regularization matrix, 
of size N × P . λ is a positive regularization parameter.

This type of functional appears in several signal reconstruction 
problems, such as compressed sensing [11,12], sparse signal de-
blurring [8], super-resolution [13] and medical image reconstruc-
tions [14,15]. To solve (3), iterative methods based on descent di-
rections or fixed point iteration schemes are commonly used and, 
therefore, a study of fast alternatives for exact line search is of rel-
evance.

In this paper, we first explore the subject describing existing 
fast methods that can be used for L2–L1 line search. In Sec-
tion 2 we describe with details the L2–L1 optimization problem 
and the one dimensional function that should be minimized for 
the line search. Then we describe the Method of False Position 
(MFP), that is very fast to approximate the minimum, but could 
need too many iterations to calculate its “exact” value, followed 
by the methods proposed by Li and Osher [16] (LO) and by Wen, 
Yin, Goldfarb and Zhang [17] (WYGZ). In Section 3 we present 
our own fast line search method and at the end of the section 
all the methods are compared through their computational cost 
(number of Floating Point Operations) as well as their computa-
tional CPU times, highlighting its advantages and disadvantages. 
Our main goal was, not only to improve the existing line search 
methods for the L2–L1 problem, but to show that exact line search 
could substantially improve the results of many existing algorithms 
when applied to important signal processing problems. So, in Sec-
tion 4 the four procedures are evaluated when used as accelerators 
for three typical iterative algorithms, namely: Iterative Shrinkage 
Algorithm (ISA), Iteratively Reweighted Least Squares (IRLS), and 
nonlinear Conjugate Gradients (NLCG). The chosen problems were 
Compressed Sensing and Sparse Deblurring. Section 5 is dedicated 
to some conclusions and further research directions.

2. L2–L1 optimal line search problem

For the multidimensional optimization problem given in (3), the 
line search problem can be written as:

α∗ = arg min
α

�(α), (4)

with

�(α) = 1

2
‖g − H(f + αd)‖2

2 + λ‖R(f + αd)‖1, (5)

where the k index is omitted for visual convenience.
Expanding (5):

�(α) =
M∑

j=1

1

2
|g j − hT

j (f + αd)|2 + λ

N∑
i=1

|rT
i (f + αd)|

=
M∑

j=1

1

2
|g j − hT

j f − αhT
j d|2 + λ

N∑
i=1

|rT
i f + αrT

i d|

=
M∑

j=1

1

2
|hT

j d|2
∣∣∣∣∣α − g j − hT

j f

hT
j d

∣∣∣∣∣
2

+
N∑

i=1

λ|rT
i d|

∣∣∣∣∣α −
(

− rT
i f

rT
i d

)∣∣∣∣∣ , (6)

where h j is the j-th row of H, and ri is the i-th row of R, it can 
be written as:

�(α) =
M∑

j=1

q j

2
|α − x j|2 +

N∑
i=1

ωi |α − αi| (7)

with:

x j = g j − hT
j f

hT
j d

, q j = |hT
j d|2 = (hT

j d)2,

αi = − rT
i f

rT
i d

, ωi = λ|rT
i d| = λ

√
(rT

i d)2. (8)

One can easily verify that this problem is a sum of multiple uni-
dimensional quadratic functions and magnitude, or absolute value 
functions. Each individual function has its own minimum point, x j
and αi , and growth rate, g j and ωi .

Although (7) is a convex nondifferentiable function,2 we can 
write its subdifferential [18] as:

∂�(α) =
M∑

j=1

q j(α − x j) +
N∑

i=1

ωi sign(α − αi), (9)

where the sign function is defined as:

sign(α) =
⎧⎨
⎩

1, if α > 0
−1, if α < 0

[−1,1] if α = 0
. (10)

Remark 1. It is worth noting that the equality above, as well as 
those that follow, are an abuse of notation, because the right hand 
side represents not a single number but a set. However, all the 
necessary calculations are easy to be verified in the general scene 
point-to-set setting. In the same way � ′(α) will denote one el-
ement of the set ∂�(α). The fact that we are dealing with one 
dimensional functions strongly simplifies the analysis.

Observing that (9) is a sum of linear terms plus sign functions, 
we can still develop it as:

∂�(α) =
⎛
⎝ M∑

j=1

q j

⎞
⎠α −

⎛
⎝ M∑

j=1

q jx j

⎞
⎠ +

N∑
i=1

ωi sign(α − αi)

∂�(α) = Q α − Q xq +
N∑

i=1

ωi sign(α − αi), (11)

where Q = ∑M
j=1 q j , and xq = 1

Q

∑M
j=1 q j x j . Note that xq is the 

weighted mean of the x j points with the respective q j weights. 
The two first terms in the right-hand side of (11) are a sum of 
lines that can be converted to one line.

A plot of the ∂�(α), shown in bold continuous line in Fig. 1, 
illustrates that the subdifferential in (11) can be represented as 

2 Since the magnitude function, |α|, is not differentiable at α = 0, we need to 
resort to the subderivative and subdifferential concepts, which establish that the 
subdifferential of |α| at α = 0 is the closed interval [−1, 1]. Each element of the set 
is called subgradient (subderivative in this case because we are dealing with single 
variables).
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