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Most of the real-world signals we encounter in real-life applications have low information content. In
other words, these signals can be well approximated by sparse signals in a proper basis. Compressive
sensing framework uses this fact and attempts to represent signals by using far fewer measurements as
compared to conventional acquisition systems. While the CS acquisition is linear, the reconstruction of
the signal from its sparse samples is nonlinear and complex. The sparse nature of the signal allows
enough room for some additional data sequence to be inserted and exactly recovered along with
the reconstructed signal. In this study, we propose to linearly embed and hide data in compressively

sensed signals and nonlinearly reconstruct both of them using a deflationary approach. We investigate
the embedding capacity as a function of signal sparsity and signal compression, as well as the noise
sensitivity of the proposed algorithm.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Nyquist-Shannon sampling theorem states that a continuous-
time bandlimited signal must be represented in terms of N uni-
formly spaced samples taken at least two times faster than the
signal bandwidth in order to be exactly reconstructed. However,
a great majority of the signals that we encounter in practical ap-
plications exhibit a rapid decay when expressed in an appropri-
ate basis. In fact, this is the idea that has given birth to most
of the lossy compression techniques such as JPEG [1], JPEG 2000
[2], etc. Many transform coding-based compression techniques like
JPEG keep only large coefficients which constitute most of the sig-
nal energy, and discard small ones. Although these techniques are
widespread and standard in applications, one may need to look
beyond the Nyquist-Shannon scheme in niche applications.

Compressive Sensing (CS) has attracted considerable attention
since its first introduction by Donoho [3] and Candes et al. [4]. This
new paradigm, in contrast to conventional data acquisition sys-
tems, attempts to sense signals by using far fewer measurements
than the conventional methods. Roughly speaking, CS tries to com-
bine acquisition and compression processes into one step. This is
a sensing strategy that enables significantly lower data rate and
computation cost in the sensing part. On the other hand, signal re-
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covery in compressive sensing framework is generally achieved by
non-linear reconstruction methods that are relatively costly. There-
fore, the computational complexity is shifted from encoder to the
decoder site, which is especially convenient whenever economies
in energy and computation effort are needed at the acquisition
site. For instance, CS framework has received attention in Wire-
less Sensor Networks which requires a low-cost data acquisition
system. Recently, Mamaghain et al. [5] have proposed a wireless
body sensor network (WBSN) system, where sensors sample ECG
signals using compressive sensing, then they transmit these mea-
surements to a remote monitoring center over a wireless chan-
nel. Xiang et al. [6] propose a compressive sensing video scheme
over wireless channel. Their system is equipped with a single-pixel
camera which is an extreme example of compressive sensing built
by Takhar et al. [7].

There are cases where one wants to embed metadata on com-
pressively sensed measurements. For example in a WBSN appli-
cation, embedding of patient’s information may be required. At-
taching patient metadata to biosensory measurements using a data
hiding scheme would enhance the application. Recall that data hid-
ing is the set of techniques to embed information in a media signal
imperceptibly and it is often used for copyright protection, data
indexing, image captioning or even for hidden communication in
military applications [8-10].

The problem of data hiding in compressive sensing framework
has been addressed in [11-15]. Sheikh and Baraniuk [11] have
studied the data embedding problem in transform domain (e.g.
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DCT for images) by assuming sparsity of the host signal, that is,
image. In the data embedding part, they first obtain a sparse repre-
sentation of the cover signal of interest based on some convenient
transform and hard thresholding these coefficients. Then, they em-
bed the hidden data by spreading it out onto the sparse coeffi-
cients. The marked image is then obtained by using the inverse
DCT transform before transmission/storage. In the decoding part,
they jointly decode both sparse DCT coefficients and embedded
data using ¢; minimization and linear decoding [16]. Using simi-
lar logic, Zhang et al. [12] have exploited compressive sensing in
a content reconstruction problem. Recently, C. Delpha et al. [13]
have proposed an informed data hiding scheme where some data,
known itself to be sparse, is hidden additively on the non-zero co-
efficients of the sparse representation of the signal. The rest of the
procedure is similar to that in [11] except that they use Costa’s
quantization based data hiding scheme [17] to obtain the sparse
data to be secretly embedded. If one has already a sparse repre-
sentation of the signal of interest, these approaches are convenient
strategies before storage or transmission.

Apart from these works, Valenzise et al. [14] have proposed a
CS based algorithm that identifies and localizes forgeries. Patsakis
et al. [15] have used compressive sensing to detect the existence
of stego content in images.

In this study we introduce a data hiding scheme that embeds
an additional information directly onto the CS measurements. This
enables data hiding while sensing. Our proposed scheme differs
from those in [11-13] in two important aspects. First, data hiding
is realized during compressive sensing. More explicitly, we do not
use compressive sensing for data hiding, but propose a data hid-
ing method for CS measurements, that is, a scheme where hidden
data is carried only by the CS measurements. Second, the hidden
data co-exists with the cover signal only in the compressed form,
so that, when the compressively sensed cover data is recovered,
the hidden data is not only recovered, but is also simultaneously
removed from it.

Finally, motivated by the need for real-time implementation,
we develop further our method into an embedding scheme that
achieves fast joint signal reconstruction and embedded data recov-
ery. A preliminary version of this work was presented at EUSIPCO
[18]. This version addressed only, as a proof of concept, the small
signal case, and did not elaborate on the theoretical limits for ex-
act recovery conditions, as given in Lemma 2, Theorem 3.

2. Compressive sensing basics

In this section, we provide a brief overview of the CS framework
and point out to theorems relevant to the data hiding problem.
Recent theoretical results related to the stability of reconstruction
methods are also discussed in view of the necessity to recover the
embedded data exactly and the document, i.e., the carrier message
within a tolerable error bound.

Let S € RN be our signal of interest and ¥ be a basis so that
S has a unique representation in that basis such that S = Wx. We
also assume that the elements of the combiner vector x are ar-
ranged in descending order of magnitude ie., |x|¥ > [x|® >...>
|x|™_ If this basis W is properly chosen according to the class of
signal of interest, S € RV, then these sorted magnitudes terminate
at the kth term for k-sparse signals, and decay to zero rapidly, of-
ten according to a power law if the signal S is compressible [19].
In other words, if N —k of the coefficients of x are negligibly
small, then the signal x is denoted as compressible or approxi-
mately k-sparse (typically N >> k) with respect to the sparsifying
basis W. A signal x is also termed as strictly k-sparse if it has at
most k non-zero coefficients, i.e., ||x||[6v <k, where ||-||eg represents

the £p-norm over N terms. In this work we assume the signal of
interest, S to possess a unique and strictly k-sparse representation

in an orthonormal basis W. A discussion on how to extend it to ap-
proximately sparse signals takes places in the Discussion section.

In CS framework, the signal is linearly sensed by taking m << N
measurements,

y =05 =dWx=Ax, (1)

where @ is an m x N measurement operator and A = ®W. There-
fore, we would like to reconstruct x, from the measurements, y.
However, (1) is an underdetermined system of linear equations
that has infinitely many solutions under the assumption that A
is full row rank. We need one or more constraints to achieve a
unique solution. Under the assumption that x is k-sparse, one can
choose the sparsest solution X from among infinite varieties of so-
lutions x. The solution can be cast as

(Pp) : min ||X||£(1)v subject to Ax=y. (2)
X

Donoho et al. [20] showed that a unique solution to Py can be
achieved if m > 2k. However, £p-norm minimization requires com-
binatorial search, and it is an NP hard problem. Although there are
alternative solutions to overcome this hurdle [21], such as Greedy
Algorithms [22,23], we will focus on convex relaxation, since de-
spite some advances in recent years, the theoretical analysis of the
conditions for a guaranteed solution in the greedy methods are
still shaky [24]. Most of the greedy algorithms either do not have
any theoretical guarantee or offer weaker theoretical bounds com-
pared to convex optimization approaches [25]. Py can be relaxed
to Py [26] as follows

(Pq): mxin ||X||e€v subject to Ax =y. 3)

It has been shown that the ¢; minimization is exact in noise free
and exactly sparse case if the measurement matrix, A, obeys the
following Restricted Isometry Property of order 2k [27].

Definition 1 (Restricted Isometry Property). Let A be an m x N matrix
and let §; € (0, 1) be the smallest quantity such that

(1—8) ||x||§2N < 1AXIZy < (1+80) ||x||§gv (4)

for all k-sparse signals, x in RN, then the matrix A satisfies the
Restricted Isometry Property (RIP) of order of k with the restricted
isometry constant §i(A).

In real life conditions, we can expect the measurements, y,
to be corrupted with random noise pattern, z, such that the re-
ceived signal becomes y, = Ax + z. Thus, a reconstruction method
is expected to be stable in the presence of noise. The stability
of the solution implies that a small change in the measurement
vector should not lead to substantial changes in the recovered
signal. Mathematically speaking, for the perturbed measurements,
¥n = Ax + z, a stable solution X would yield

||X—5<||zg' <k llzllgp (5)

with a small positive constant «, and where X is the reconstructed
signal.

If the measurements are corrupted by some noise process with
bounded energy such that ”Z”[gl <€ [28,29], then (P1) can be re-
laxed to

(PD):min Xl s.t. |y — Axllen <e, (6)

under certain conditions discussed below.

Restricted Isometry Property implies the stability of (P{). Al-
though we will focus on strictly sparse signals, RIP also implies
stability when we deal with approximately sparse signals, i.e.,
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