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A theoretical framework based on the maximum Tsallis entropy is proposed to explain the tail behavior 
of the intra-day stock returns, providing a rationale for the cubic law behavior for high frequency data. 
The specification of first two time-dependent moment constraints yields a q-Gaussian distribution for 
the intra-day stock returns. The value of the parameter q is estimated by minimizing appropriately 
modified Jensen–Shannon (JS) divergence in Tsallis entropy framework between q-Gaussian distribution 
and empirical NASDAQ 100 data. The estimated value of q yields the well-known empirically observed 
cubic law tail behavior of the intra-day stock returns which has been observed for high frequency data 
sets. To validate the cubic law stylized fact, five more data sets from high frequency NASDAQ 100, S&P 
500 and NYSE index have been examined and it is found that the cubic law operates.

© 2015 Published by Elsevier Inc.

1. Introduction

Recent empirical investigations on high frequency stock price 
data reveal the emergence of cubic law for fat-tailed intra-day re-
turns. Application of signal processing to high frequency financial 
signals [1] (such as stock price, returns, volatility etc.) has largely 
remained unexplored [2]. However, Gradojevic and Gencay [3] have 
pointed out that the well-known signal processing techniques are 
unable to explain the distributional properties of financial markets, 
which exhibit long-range interactions. It has been an interesting 
and challenging problem for researches to find out the true dis-
tribution of stock price change. Gerig, Vicente and Fuentes [4]
provide a mixture distribution model for intra-day stock returns 
to capture the tail fluctuation in terms of Student’s t-distribution 
with a certain number of degrees of freedom (df) which is a pos-
itive integer. However, t-distribution will not be applicable if the 
estimation procedure to fit it to empirical data does not lead to 
a discrete value of the parameter corresponding to degrees of 
freedom. Researches have applied the non-extensive statistical me-
chanics to study the tail behavior of price change [5]. Following 
the Tsallis framework, Borland and Bouchaud [6,7] have modeled 
the non-Gaussian intra-day stock price change through stochas-
tic differential equation (SDE) involving non-extensive parameter. 
It has been reported by Stanley and Buchanan [8–10] that across 
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all the stocks in different countries, the intra-day returns (IDR) for 
high frequency data exhibit cubic law [11–13]. This law has also 
been validated by Pan and Sinha [13] for Indian financial market. 
Kumar and Deo [14] used the multifractal detrended fluctuation 
analysis (MF-DFA) to characterize multifractal structure of Indian 
financial market. An important problem is to understand the un-
derlying mechanism which leads to such a behavior. This aspect 
has also been modeled by Cozzolino and Zahner [15]. They make 
the following observation: “The goal is the probability distribution 
encoding the decision-maker’s uncertainty of the price of the stock 
at time t , given his prior knowledge concerning its possible future 
behavior” [15]. Behmardi, Raich and Hero [16] have outlined a new 
procedure to estimate parameters of Shannon maximum entropy 
distribution. By employing the maximum entropy framework due 
to Jaynes [17], the maximization of Shannon entropy subject to 
first two moments of intra-day returns gives the Gaussian proba-
bility distribution. Accordingly maximum Shannon entropy fails to 
capture the fat tail behavior of intra-day returns. The underlying 
reason is that Shannon entropy is essentially applicable to systems 
which are extensive. However, many characteristics of the financial 
market display non-extensivity. Accordingly, Tsallis entropy may be 
well-suited to deal with financial applications.

Tsallis [5] has proposed a non-extensive measure of entropy 
with a parameter q which in the limit q → 1 results in Shan-
non entropy. This entropy measure has successfully described the 
phenomenon of multifractal structure and long-range dependence 
which exhibits a power-law behavior [18]. A notable feature of 
Tsallis entropy is pseudo-additivity of two independent systems 
[5,19–21]. In an interesting paper, Borland and Bouchaud [6,7] have 
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proposed a non-Gaussian model of stock returns by incorporat-
ing the “statistical feedback” process [7], which gives rise to a 
nonlinear Fokker–Planck equation involving non-extensive param-
eter q. Gradojevic and Gençay [3] have employed Tsallis entropy 
to study the behavior of markets, particularly during financial cri-
sis. They examine the behavior of the parameter q to characterize 
the markets ranging from mature to emerging ones. The parameter 
q is estimated for normalized stock returns for daily, weekly and 
monthly data of S&P 500 index. Similar analysis has been carried 
out by Namakia et al. [22] who have analyzed normalized returns 
for monthly, weekly and daily for various index data sets TSE, SSE, 
KS 11, DJIA 30, S&P 500 and NASDAQ 100.

In this paper, we broaden Shannon’s maximum entropy frame-
work adopted by Cozzolino and Zahner [15] to the one based 
on maximum Tsallis entropy. The maximization of Tsallis entropy 
yields probability distribution of intra-day returns in terms of non-
extensive parameter q which can be estimated from the available 
high frequency stock price data. It may be pertinent to point out 
that estimation procedures based on Shannon entropy framework 
may not be valid when applied to problems formulated in Tsal-
lis entropy framework. This limitation is evident in the estimation 
procedures adopted by Gradojevic and Gencay [3] where they have 
obtained the estimate of q by minimizing the sum of the squared 
errors of the logarithms of the q-Gaussian probability density and 
empirical data density. In the second method, they have estimated 
the parameter q by maximum likelihood method. Further, Grado-
jevic and Gencay [3] note that the estimates of q obtained by 
different procedures are very different. The reason could be on ac-
count of use of estimation procedures which are not consistent 
with Tsallis entropy framework. In light of preceding discussion, 
the estimation procedure which we have adopted requires mini-
mization of generalized Jensen–Shannon (JS) divergence in Tsallis 
entropy framework between maximum entropy probability distri-
bution (MEPD) and the reference empirical distribution.

This paper consists of six sections. Starting with introduction 
in Section 1, we discuss in Section 2 the maximum Tsallis en-
tropy framework to compute probability distribution of intra-day 
returns involving parameter q. The next Section 3 outlines the pro-
cedure based on symmetric JS measure. Using high frequency data 
Powershares QQQ listed in NASDAQ 100 index, the parameter q is 
estimated and cubic tail behavior of intra-day returns is demon-
strated in Section 4. Section 5 validates the cubic stylized fact for 
high frequency data based on data of five other stocks viz. General 
Motors, Coca-Cola, SPDR S&P 500 ETF, NQ Mobile Inc. and Ever-
source Energy listed in NYSE, NASDAQ 100 and S&P 500 index. 
The choice of these high frequency datasets, as collected in 2009, 
is dictated by the fact that these were the only datasets which 
were freely available on the website www.furturstickdata.com [23]
at that point of time. The last section gives the conclusion.

2. Maximum entropy probability distribution

2.1. q-Gaussian distribution of stock return

It is common to model stock intra-day returns r(t) in terms of 
the logarithmic relative price changes of stock. We have

r(t) ≡ ln

(
St

St−�t

)
. (1)

The well-known Tsallis entropy [5,20] in terms of non-extensive 
parameter q is given by

Sq(r, t) = 1 − ∫ +∞
−∞ [ fq(r, t)]qdr

q − 1
, (2)

Our aim is to investigate probability distribution of intra-day re-
turns when Tsallis entropy is maximized subject to the following 
constraints.

The normalization constraint is given by

+∞∫
−∞

fq(r, t)dr = 1. (3)

The first two time-dependent moment constraints are specified as

+∞∫
−∞

f̃ es(r, t)rdr = μt, (4)

and

+∞∫
−∞

f̃ es(r, t)(r − μt)2dx = σ 2t, (5)

where

f̃ es(r, t) = [ fq(r, t)]q/

∫
[ fq(r, t)]qdr, (6)

represents the escort probability distribution [3,22,24]. The justi-
fication of using the escort distribution instead of the commonly 
used probability distribution is given in Abe and Bagci [24]. In the 
context of a random variable, they have discussed two kinds of 
expectation viz. ordinary expectation and q-expectation (involving 
escort distribution). In their paper, they have argued that in non-
extensive statistical mechanics that exhibit the power-law distribu-
tion, only the q-expectation is consistent with the basic framework 
of micro-canonical distribution.

We construct Lagrangian as given by,

L( fq, r) = 1 − ∫ +∞
−∞ [ fq(r, t)]qdr

q − 1
+ λ1

⎛⎝1 −
+∞∫

−∞
fq(r, t)dr

⎞⎠
+ λ2

⎛⎝μt −
+∞∫

−∞
r

(
[ fq(r, t)]q/

∫
[ fq(r1, t)]qdr1

)
dr

⎞⎠
+ λ3

⎛⎝σ 2t −
+∞∫

−∞

(
[ fq(r, t)]q/

∫
[ fq(r1, t)]qdr1

)

× (r − μt)2dr

⎞⎠ , (7)

where λ1, λ2 and λ3 are Lagrangian parameters. These can be de-
termined from constraints. Using Euler–Lagrange equation

∂L

∂ fq(r, t)
− d

dr

(
∂L

∂ f ′
q(r, t)

)
= 0 , (8)

Eq. (8) in conjunction with Eqs. (2)–(7) yields the desired maxi-
mum entropy probability distribution of intra-day returns. We ob-
tain

fq(r, t) = 1

Z

(
1 − 1 − q

(3 − q)σ 2t
(r − μt)2

) 1
1−q

, −∞ < r < ∞, (9)

where the normalization constant Z turns out to be

Z = σ t

√
(3 − q)π

q − 1

�(
3−q

2q−2 )

�( 1
q−1 )

, 1 < q < 3. (10)
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