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a b s t r a c t

A robust synthesis algorithm is developed for a class of uncertain, linear parameter varying (LPV) systems.
The uncertain system is described as an interconnection of a nominal LPV system and a block structured
uncertainty. The nominal part is a ‘‘gridded’’ LPV systemwith statematrices that are arbitrary functions of
the parameter. The input/output behavior of the uncertainty is described by integral quadratic constraints
(IQCs). The robust synthesis problem leads to a non-convex optimization. The proposed algorithm is a
coordinate-wise descent similar to the well-known DK iteration for µ synthesis. It alternates between
an LPV synthesis step and an IQC analysis step. Both steps can be efficiently solved as semidefinite
programs. The derivation of the synthesis algorithm is less obvious for LPV systems as compared to its
LTI counterpart due to the lack of a valid frequency response interpretation. The main contribution is the
construction of the iterative synthesis algorithm using time domain dissipation inequalities and a scaled
system analogous to that appearing in µ synthesis. It is shown that the proposed algorithm ensures that
the robust performance is non-increasing at each iteration step. The effectiveness of the proposedmethod
is demonstrated on a simple numerical example.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

This paper considers the robust synthesis problem for a
class of uncertain linear parameter varying (LPV) systems. The
uncertain system is described as an interconnection of a nominal
(not-uncertain) LPV system and a block structured uncertainty.
The state matrices of the nominal system have an arbitrary
dependence on parameters, i.e. it is a ‘‘gridded’’ LPV system. Such
models arise naturally in many applications via linearization of
a nonlinear model around parameterized operating (trim) points
(Bobanac, Jelavić, & Perić, 2010; Moreno, Seiler, & Balas, 2012). The
input/output behavior of the uncertainty is described by integral
quadratic constraints (IQCs) (Megretski & Rantzer, 1997). The use
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of IQCs is sufficiently general to describe ‘‘uncertain’’ components
that include nonlinearities, in addition to (parametric or dynamic)
uncertainty.

The robust synthesis problem, formulated in Section 3.1, is
to synthesize a controller that minimizes a closed-loop robust
performance metric. This leads to a non-convex optimization that
involves a search for both the controller state matrices and the IQC
analysis variables. The proposed algorithm, given in Section 3.2,
consists of a coordinate-wise descent similar to the well-known
DK-iteration (Balas, Chiang, Packard, & Safonov, 2007; Zhou,
Doyle, & Glover, 1996) for µ synthesis. Specifically, the proposed
algorithm alternates between an LPV synthesis step and an IQC
analysis step. The synthesis step essentially relies on existing
results for nominal LPV systems in Wu, Yang, Packard, and Becker
(1996). The analysis step is performed using a matrix inequality
condition to bound the robust performance of the closed-loop
uncertain LPV system (Section 4.1). Both steps can be efficiently
solved as semidefinite programs (SDPs). The effectiveness of the
proposed method is demonstrated on a numerical example in
Section 5.

There are twomain technical challenges. First, the nominal LPV
system does not have a valid frequency response interpretation
and hence the analysis requires a time domain approach.
Section 4.1 develops a matrix inequality robustness analysis
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condition (Theorem 2) using (time domain) dissipation inequality
techniques. This analysis condition is an extension of the worst-
case gain condition in Pfifer and Seiler (2015). An alternative to the
dissipation inequality based approach for IQCs in the time domain
is given in Cantoni, Jönsson, and Khong (2013). It is purely based on
operator theory and uses homotopy arguments to proof stability.
This alternative approach can potentially be used to develop
synthesis algorithms complementary to the one developed here
or provide an alternative proof for the presented algorithm. The
second technical challenge is that an appropriate scaled system
must be constructed to link the analysis and synthesis steps.
This construction, described in Section 4.2, is such that the next
synthesis step on the scaled plant yields a controller that improves
the closed-loop robust performance. These technical results are
used to show the following main result in Section 4.3: the robust
performance metric is non-increasing at each iteration step and
hence the algorithm converges.

This paper builds on known results for both LPV systems and
IQCs. A brief review is provided in Section 2. In addition, there
are several related robust synthesis results for LPV systems whose
state matrices have a rational dependence on the parameters
(Apkarian & Adams, 1998; Scherer & Kose, 2012; Veenman &
Scherer, 2010, 2014). This rational dependence leads to finite-
dimensional matrix inequalities in the algorithm. In contrast, the
algorithm in this paper is developed for the case where the
state matrices have an arbitrary dependence on the parameters.
This leads to parameter-dependent matrix inequalities for both
the synthesis and analysis steps. As a result, parameter gridding
is required to obtained finite-dimensional matrix inequality
conditions. Finally, this paper builds on Wang, Pfifer, and Seiler
(2014) which only considered LTI uncertainty. This paper extends
the algorithm to uncertainties described by a general class of IQCs.

2. Background

2.1. Linear Parameter Varying (LPV) Systems

LPV systems are a class of systems whose state-space matri-
ces are continuous functions of a time-varying parameter ρ :

R+
→ Rnρ . The set of admissible parameter trajectories is de-

fined as T := {ρ : R+ → Rnρ : ρ(t) ∈ P ∀t ≥ 0 and
ρ(t) is continuously differentiable} where P ⊂ Rnρ is a known
compact set. In some applications, the parameter varying rate ρ̇ are
assumed to be bounded. However, only the rate unbounded case is
considered here for simplicity. All results in this paper generalize,
but with extensive notations, to the rate bounded case using exist-
ing results in Pfifer and Seiler (2015) andWu et al. (1996). An nGth
order LPV system, Gρ , is defined by
ẋ
e


=


A(ρ) B(ρ)
C(ρ) D(ρ)

 
x
d


(1)

where A : P → RnG×nG , B : P → RnG×nd , C : P → Rne×nG and
D : P → Rne×nd . The performance of an LPV system Gρ is specified
by its induced L2 gain

Gρ := sup0≠d∈L2, ρ∈T
∥e∥
∥d∥ . A generalization

of the Bounded Real Lemma (Wu et al., 1996) provides a sufficient
condition to upper bound

Gρ. The next theorem states the con-
dition but simplified for the special case of rate unbounded LPV
systems.

Theorem 1 (Wu et al., 1996). Gρ is exponentially stable and
Gρ ≤

γ if there exists P = PT
≥ 0 such that ∀ρ ∈ P

PA(ρ)+ A(ρ)TP PB(ρ)
BT (ρ)P −I


+

1
γ 2


C(ρ)T

D(ρ)T

 
C(ρ) D(ρ)


< 0.

(2)

Fig. 1. Graphical interpretation of the IQC.

This theorem forms the basis for the induced L2 norm controller
synthesis in Wu et al. (1996). Consider an open loop LPV system
Gρ with inputs [dT , uT

]
T and outputs [eT , yT ]T . The objective is to

synthesize a controller Kρ :
ẋK
u


=


AK (ρ) BK (ρ)
CK (ρ) DK (ρ)

 
xK
y


(3)

such that the closed-loop interconnection of Gρ and Kρ , which is
given by the lower linear fractional transformation (LFT), denoted
Fl(Gρ, Kρ), has the minimal induced L2 gain: minKρ

Fl(Gρ, Kρ)
.

This LPV synthesis problem can be solved via parameterized LMI
conditions. Details on the solution can be found inWu et al. (1996).
It should be noted that both the analysis and synthesis problems
involve an infinite collection of LMI constraints parameterized by
ρ ∈ P . A remedy to this issue, which works in many practical
examples, is to approximate the set P by a finite gridding set
Pgrid ∈ P .

2.2. Integral Quadratic Constraints (IQCs)

IQCs (Megretski & Rantzer, 1997) provide a framework for
robustness analysis building on work by Yakubovich (1971). The
IQC specifies a constraint on the input/output signals of the
perturbation. The following definitions characterize the constraint
in the frequency and time domain.

Definition 1. LetΠ ∈ RL(nv+nw)×(nv+nw)
∞ be given. Two signals v ∈

Lnv2 [0,∞) and w ∈ Lnw2 [0,∞) satisfy the frequency domain IQC
defined by the multiplierΠ if

∞

−∞


V̂ (jω)
Ŵ (jω)

∗

Π(jω)

V̂ (jω)
Ŵ (jω)


dω ≥ 0 (4)

where V̂ and Ŵ are Fourier transforms of v and w. A bounded,
causal operator ∆ : Lnv2e [0,∞) → Lnw2e [0,∞) satisfies the
frequency domain IQC defined by Π if Eq. (4) holds for all v ∈

Lnv2 [0,∞) andw = ∆(v).

Definition 2. Let Ψ be a stable LTI system, i.e. Ψ ∈ RHnz×(nv+nw)
∞ ,

and M = MT
∈ Rnz×nz . Two signals v ∈ Lnv2e [0,∞) and w ∈

Lnw2e [0,∞) satisfy the time domain IQC defined by themultiplierΨ
and matrix M if the following inequality holds for all T ≥ 0 T

0
zT (t)Mz(t) dt ≥ 0 (5)

where z is the output of Ψ driven by inputs (v,w) with zero
initial conditions. A bounded, causal operator ∆ : Lnv2e [0,∞) →

Lnw2e [0,∞) satisfies the time domain IQC defined by (Ψ ,M) if
Eq. (5) holds for all v ∈ Lnv2e [0,∞),w = ∆(v) and T ≥ 0.

IQCs can be used tomodel a variety of nonlinearities and uncer-
tainties, e.g. saturation and norm bounded uncertainty (Megretski
& Rantzer, 1997). Fig. 1 provides a graphical interpretation for the
time domain IQC. If ∆ satisfies the time domain IQC defined by Ψ
then the filtered signal z satisfies the constraint in Eq. (5) for any
finite-horizon T ≥ 0.



Download English Version:

https://daneshyari.com/en/article/695202

Download Persian Version:

https://daneshyari.com/article/695202

Daneshyari.com

https://daneshyari.com/en/article/695202
https://daneshyari.com/article/695202
https://daneshyari.com

