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a b s t r a c t

It is a well-known fact that externally positive linear systems may fail to have a minimal positive
realization. In order to investigate these cases, we introduce the notion of minimal eventually positive
realization, for which the state update matrix becomes positive after a certain power. Eventually positive
realizations capture the idea that in the impulse response of an externally positive system the state
of a minimal realization may fail to be positive, but only transiently. As a consequence, we show that
in discrete-time it is possible to use downsampling to obtain minimal positive realizations matching
decimated sequences of Markov coefficients of the impulse response. In continuous-time, instead, if the
sampling time is chosen sufficiently long, a minimal eventually positive realization leads always to a
sampled realization which is minimal and positive.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The positive realization problem for an externally (i.e., in-
put–output) positive linear system consists in finding a state space
representation which is itself positive, i.e., a triple {A, b, c} for
which A, b and c are nonnegative. The problem has been inves-
tigated for several decades, see Benvenuti and Farina (2004) and
Farina and Rinaldi (2000) for an introduction and a survey of the
main results.

Unlike existence, which is well-characterized (Anderson,
Deistler, Farina, & Benvenuti, 1996; Farina & Benvenuti, 1995;
Maeda & Kodama, 1981; Ohta, Maeda, & Kodama, 1984), the prob-
lem of constructing positive realizations of minimal order is a
difficult one, far from being completely solved. The positivity con-
straints, in fact, imply that not all externally positive systems ad-
mit a realization which is both minimal and positive, i.e., which
is simultaneously positive, controllable and observable. There is
by now a consistent literature on the topic, notably dealing with
conditions on the order of the achievable realizations (Hadji-
costis, 1999; Nagy &Matolcsi, 2003), and developing algorithms to
construct positive realizations in special cases (Benvenuti, 2013;
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Benvenuti, Farina, Anderson, & De Bruyne, 2000; Canto, Ricarte, &
Urbano, 2007; Kim, 2012; Nagy & Matolcsi, 2005). However, sys-
tematic procedures for obtaining minimal positive realizations are
in general unknown.

Rather than contributing to this search, the scope of this paper
is to investigate the structure of the minimal realization of
externally positive systems, and to suggest a class of minimal
realizations capturing the gap between external and internal
positivity. The starting point of our approach is the observation
that the fundamental mathematical principle behind positivity
is the Perron–Frobenius theorem. In essence, existence of a
positive realization is associated to existence of a polyhedral cone
which is A-invariant (Anderson et al., 1996; Ohta et al., 1984).
Such cone contains the positive eigenvector associated to the
dominant eigenvalue, and at least when dominance is strict
and the input is vanishing, the evolution of the linear system
tends to become aligned with that eigenspace. If we relax the
assumption of positivity of Awhile maintaining the condition that
the eigenvector must be contained in Rn

+
, then we still have that

the free evolution of the state of a minimal realization becomes
positive after a transient. Matrices A having both left and right
dominant eigenvector in Rn

+
form a special class of matrices

called eventually positive, see Altafini and Lini (2015) and Noutsos
(2006).While thesematrices can have negative entries (hence they
do not correspond to positive realizations), they have the property
that after a certain power they becomepositivematrices. Therefore
in discrete-time this property naturally leads to free evolutions
of the state variables that become nonnegative after a certain
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number of steps. If in addition the reachable cone associated to
the realization is contained in Rn

+
, then the entire state vector

must become positive after a transient. Notice that our approach
is qualitatively different from Guidorzi (2014), where relaxing the
positivity of A may lead to state trajectories which never become
positive when initialized outside the reachable cone.

Formalizing our argument, we show in the paper that aminimal
realization in which A is eventually positive and b (resp. c)
belongs to the corresponding A-invariant cone (resp. dual cone)
is guaranteed to be externally positive. As for the converse, we
provide constructive procedures to obtain a minimal eventually
positive realization from a given externally positive system. While
we do not have an explicit proof that every externally positive
system admits a minimal realization of this type, it is tempting to
conjecture that indeed it is so, at least in the case of a simple strictly
dominant pole.

With respect to a preliminary version of this manuscript
appearing as a conference paper (Altafini, 2015), the constructive
procedure proposed here (Algorithm 1) is more general, and
recovers the result of Altafini (2015) as a special case (Algorithm2).
Such special case is instrumental to show that a consequence of
the existence of a minimal eventually positive realization is that
the sequence of Markov parameters that compose the impulse
response has decimated subsequences for which a minimal
positive realization exists, and can be found downsampling the
eventually positive realization. The number of steps it takes for A
to become positive gives a lower bound on the sought decimation
factor. In continuous-time, instead, provided the sampling time
is chosen sufficiently high, the sampled system obtained from
a minimal eventually positive realization is itself positive and
minimal. Also in this case (which is not treated in Altafini, 2015),
once an eventually positive realization is available, a lower bound
on the sampling time leading to a minimal positive sampled
realization is known. These results on sampled/downsampled
systems can be interpreted as a dual of the usual Nyquist–Shannon
theorem: instead of seeking for a sampling frequency sufficiently
high so as to preserve all interesting frequencies of the system,
if one selects a sampling frequency enough low it is possible
to achieve an internal minimal representation of the system
which remains positive, because it disregards the high frequency
content. In externally positive systems with strict dominance of
the real eigenvalue, as we consider here, these frequencies are
associated to non-dominant modes, hence they are necessarily
transient. Therefore the nonpositive entries of our eventually
positive realizations and the violations of positivity in the state
vectors they induce must necessarily be associated to the non-
dominant modes.

2. Linear algebra background

For a matrix A = (aij) ∈ Rn×n, in this paper A ≥ 0 means
aij ≥ 0 for any i, j ∈ 1, . . . , n, and A ≠ 0, while A > 0 means
aij > 0 for all i, j = 1, . . . , n. The matrix A is nonnegative (resp.
positive) if A ≥ 0 (resp. A > 0). This notation is used also for
vectors. The spectrum of A is denoted sp(A) = {λ1(A), . . . , λn(A)},
where λi(A), i = 1, . . . , n, are the eigenvalues of A. The spectral
radius of A, ρ(A), is the smallest real positive number such that
ρ(A) ≥ |λi(A)|, ∀i = 1, . . . , n.

2.1. Eventually positive matrices

Definition 1. A matrix A ∈ Rn×n has the strong Perron–Frobenius
property if ρ(A) is a simple positive eigenvalue of A s.t. ρ(A) > |λ|
for every λ ∈ sp(A), λ ≠ ρ(A), and v, the right eigenvector relative
to ρ(A), is positive.

Denote PF n the set of matrices in Rn×n that possess the strong
Perron–Frobenius property. These properties are associated to a
class of matrices called eventually positive (Elhashash & Szyld,
2008; Friedland, 1978; Johnson & Tarazaga, 2004; Noutsos, 2006),
class that is strictly bigger than that of positive matrices, in the
sense that the matrices can contain negative entries.

Definition 2. A real squarematrix A is said to be eventually positive
if ∃ ηo ∈ N such that Aη > 0 for all η ≥ ηo.

The smallest integer ηo of Definition 2 is called the power index of
A. Following Olesky, Tsatsomeros, and van den Driessche (2009),
eventually positive matrices will be denoted A

∨

> 0. For eventually
positive matrices a necessary and sufficient condition for the
fulfillment of the strong Perron–Frobenius property is available.

Theorem 1 (Noutsos, 2006, Theorem 2.2). For A ∈ Rn×n the follow-
ing are equivalent:

(1) Both A, AT
∈ PF n;

(2) A
∨

> 0;
(3) AT ∨

> 0.

A matrix A is said exponentially positive if eAt =


∞

k=0
Aktk
k! >

0 ∀ t ≥ 0, and A is exponentially positive if and only if A isMetzler,
i.e., aij ≥ 0 ∀ i ≠ j (Noutsos & Tsatsomeros, 2008).

Definition 3. A matrix A ∈ Rn×n is said eventually exponentially
positive if ∃ to ∈ [0, ∞) such that eAt > 0 ∀ t ≥ to.

We denote the smallest such to the exponential index of A. The
relationship between eventual positivity and eventual exponential
positivity is given in Noutsos and Tsatsomeros (2008).

Theorem 2 (Noutsos & Tsatsomeros, 2008, Theorem 3.3). Given A ∈

Rn×n, A is eventually exponentially positive if and only if ∃ d ≥ 0 such
that A + dI

∨

> 0.

2.2. Invariant cones and eventually positive matrices

A set K ⊂ Rn is called a convex cone if α1x1 + α2x2 ∈

K ∀ x1, x2 ∈ K , α1, α2 ≥ 0. K is called solid if the interior of K ,
int(K ), is nonempty, and pointed if K ∩ (−K ) = {0}. A proper
cone is a closed, pointed, solid cone. A cone is polyhedral if it can
be expressed as the nonnegative combination of a finite number of
generating vectors ω1, . . . , ωµ ∈ Rn:

K = cone(Ω) =


x = Ωα =

µ
i=1

αiωi, αi ≥ 0

, (1)

where Ω =

ω1 . . . ωµ


∈ Rn×µ, α =


α1 . . . αµ

T
∈ Rµ+. It is

well-known that alternatively to the ‘‘vertices description’’ (1) for
K one can use the ‘‘face description’’

K = {x s.t. Γ x ≥ 0} , Γ ∈ Rµ×n.

Thepair {Ω, Γ } forms a ‘‘double description pair’’ forK . LetK ∗
=

{y ∈ Rn s.t. yT x ≥ 0 ∀ x ∈ K } be the dual cone of K . In terms of
the double description pair {Ω, Γ }, we have:

K ∗
= {y s.t. y = Γ Tβ, β ≥ 0} = {y s.t.ΩTy ≥ 0},

i.e., {Γ T , ΩT
} is a double description pair for K ∗.

Given A ∈ Rn×n, the cone K is said A-invariant if AK ⊆ K .
For an A-invariant cone K , A is said K -positive if A(K \ {0}) ⊆

int(K ), i.e., Amaps any nonzero element of K into int(K ). Notice
that if A is K -positive then A is K -irreducible, i.e., it does not
leave any of the faces of K invariant (except for {0} and K itself).
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