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The goal of signal processing is to estimate the contained frequencies and extract subtle changes in the 
signals. In this paper, a new adaptive multiple signal classification-empirical wavelet transform (MUSIC-
EWT) methodology is presented for accurate time–frequency representation of noisy non-stationary and 
nonlinear signals. It uses the MUSIC algorithm to estimate the contained frequencies in the signal and 
build the appropriate boundaries to create the wavelet filter bank. Then, the EWT decomposes the time-
series signal into a set of frequency bands according to the estimated boundaries. Finally, the Hilbert 
transform is applied to observe the evolution of calculated frequency bands over time. The usefulness and 
effectiveness of the proposed methodology are validated using two simulated signals and an ECG signal 
obtained experimentally. The results demonstrate clearly that the proposed methodology is immune to 
noise and capable of estimating the optimal boundaries to isolate the frequencies from noise and estimate 
the main frequencies with high accuracy, especially the closely-spaced frequencies.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

An important issue in signal processing is the development of 
effective data analysis methods capable of modeling the underlying 
phenomena in signals obtained from physical or biological events. 
Most data analysis methods use a pre-determined basis to pro-
cess data and therefore are considered non-adaptive or rigid. Many 
physical signals include significant noise and closely-spaced fre-
quencies that cannot be effectively analyzed using these methods 
[12]. Further, real-life time series signals such as biomedical sig-
nals [38,43,30,48,8,2,9–11,6,7], or vibration signals obtained from 
civil structure subjected to dynamic excitations [33,14,26,13,32,27]
include nonlinear and non-stationary properties that cannot be 
adequately analyzed using these methods. In order to overcome 
these limitations, time–frequency representation (TFR) has become 
a good alternative to analyze nonlinear and non-stationary signals 
since a TFR can provide information about the frequencies con-
tained in signal over time [40].
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In recent years, different TFRs have been used for analyz-
ing nonlinear and non-stationary signals, such as short-time 
Fourier transform (STFT) [17], Wigner–Ville distribution (WVD) 
[46], wavelet transform (WT) [16,3], and Hilbert–Huang transform 
(HHT) [22]. Despite providing useful results, the aforementioned 
methods present some unresolved difficulties. For instance, STFT 
cannot adequately describe instantaneous frequencies due to its 
fixed window size [45]. The WVD introduces cross-term interference
between estimated signal components which impedes efficient es-
timation of the instantaneous frequencies [39]. To overcome the 
limitations of STFT, the WT provides an efficient TFR for non-
linear and non-stationary signals since it decomposes the signal 
into multiple time–frequency levels retaining the transient char-
acteristics of the analyzed signal [4,5,42]. Unfortunately, the WT 
capabilities are degraded in highly noisy environments. Further, 
WT is a non-adaptive method that is based on the use of some 
basis independent of the processed signal. It does not decompose 
a time signal according to its contained information and conse-
quently cannot estimate the instantaneous frequencies effectively. 
To introduce adaptability, the wavelet packet transform [24,34,41]
was introduced, but, it is still based on the use of prescribed basis 
limiting its adaptability.

In contrast, empirical mode decomposition (EMD) combined 
with Hilbert transform (HT), known as Hilbert–Huang transform 
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Fig. 1. EWT basis construction (LPF = low pass filter; BPF = band pass filter).

or HHT, is an adaptive signal processing method capable of an-
alyzing time-varying or nonlinear signals according to information 
contained in the signal [22]. The HHT method also suffers from the 
mode mixing effect encountered in the EMD method which limits 
the accurate estimation of the instantaneous frequencies [47].

Recently, Gilles [19] introduced empirical wavelet transform 
(EWT) to lessen the problems found in the HHT method. EWT 
provides an efficient TFR of nonlinear and non-stationary time-
series signals, since it can decompose the time signal according 
to frequency information contained in the signal. Unfortunately, 
the EWT capabilities are degraded under noisy signals because an 
unexpected segmentation of the signal may result limiting an ac-
curate estimation of the instantaneous frequencies.

It is highly desirable to have an algorithm capable of estimat-
ing the fundamental frequencies of a signal with great accuracy, 
noise immunity, and without the need of significant additional 
computing processing resources. Jiang and Adeli [25] introduced 
a new vibration signal-based damage detection method based on 
a power density spectrum method, called pseudospectrum. They 
note that “the pseudospectrum provides a reliable solution for eigen-
values of a non-normal matrix (whose eigenvectors are not orthogonal)” 
and point out “the non-normal matrices exist in the chaotic motion 
of transient nonlinear systems represented by measured data.” They 
employ the multiple signal classification (MUSIC) method to de-
termine the pseudospectrum from the time series of the structural 
response. This MUSIC method produces a high-resolution spectral 
or frequency content estimation from a set of eigenvectors of an 
autocorrelation matrix generated by the input signals, even for 
data with high noise or a low signal-to-noise ratio. It provides an 
increased detectability of the fundamental frequencies contained 
in the signal, especially, the closed spaced frequencies compared 
to the conventional FFT. Jiang and Adeli [25] apply the MUSIC 
methodology in combination with their dynamic wavelet neural 
network (WNN) to detect damage in highrise buildings with only 
a small amount of sensed data successfully.

The work of Jiang and Adeli [25] leads us to conclude that 
the MUSIC algorithm can be an effective tool for estimating the 
appropriate boundaries of the wavelet filter bank. In this paper, 
a new MUSIC-EWT methodology is presented to obtain accurate 
time–frequency representation of a noisy signal. To demonstrate 
the effectiveness and usefulness of the proposed methodology, it is 
applied to a) a simulated free vibration problem with two closely-
spaced frequencies and a high-level of noise, b) a non-stationary 
simulated signal with a high-level of noise, and c) a real-life ex-
ample of the electrocardiogram (ECG) signal. The goal of the first 
two examples is to validate the accuracy and noise immunity of 
the proposed methodology for estimating the appropriate bound-
aries to create the wavelet filter bank. The efficacy of the proposed 
methodology to estimate the boundaries of the EWT and fre-
quencies of time-series signal is compared with the original EWT 
proposed by Gilles [19]. Further, in order to demonstrate the ad-
vantages of the proposed methodology, it is compared with three 
advanced and widely-used signal processing techniques: Hilbert-
Huang transform (HHT), the discrete wavelet transform (WT), and 
Extended Compact Kernel (ECK) [15].

2. Empirical wavelet transform

EWT is an adaptive wavelet transform capable of extracting 
individual instantaneous frequencies of a time series signal [19]. 
To provide signal processing adaptability, the segmentation of the 
Fourier spectrum is the most important step in the EWT. First, the 
local maxima of the Fourier spectrum x(ω) are estimated. Next, 
the boundaries of various frequencies ωi are defined as the center 
between two consecutive maxima. Thus, the Fourier support [0, π ]
is segmented into N contiguous segments. Each segment or fre-
quency band is indicated by Sn = [ωn−1, ωn] and U N

n=1 Sn = [0, π ]
where U represents the union operator. A transition phase of 
width 2τn is defined around each ωn (Fig. 1). A more detailed 
explanation of how to select τn can be found in Gilles [19]. The 
empirical wavelets are defined as one low-pass φn(ω) and N − 1
band-pass ψn(ω) filters corresponding to the approximation and 
details components, respectively, on each Sn .

Fig. 1 displays an example of low-pass and band-pass wavelet 
filters identified as LPF, and BPF on the figure, where the verti-
cal axis corresponds with the amplitude of the filters. The low-
pass filter has a cut-off frequency of ω1, which corresponds to 
the first estimated boundary. The first band-pass filter has a fre-
quency band [ω1, ω2], the second band-pass filter has a frequency 
band [ω2, ω3], and the last band-pass filter has a frequency band 
[ωn+1, ωπ ].

Following the idea used in deriving the Meyer’s wavelet, 
Gilles [19] defines the empirical scaling function as [16]:

φn(ω) =

⎧⎪⎪⎨
⎪⎪⎩

1 if |ω| ≤ ωn − τn

cos[π
2 β( 1

2τn
(|ω| − ωn + τn))]

if ωn − τn ≤ |ω| ≤ ωn + τn

0 otherwise

(1)

and the empirical wavelet function as

ψn(ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 if ωn + τn ≤ |ω| ≤ ωn+1 − τn+1

cos[π
2 β( 1

2τn+1
(|ω| − ωn+1 + τn+1))]

if ωn+1 − τn+1 ≤ |ω| ≤ ωn+1 + τn+1

sin[π
2 β( 1

2τn
(|ω| − ωn + τn))]

if ωn + τn ≤ |ω| ≤ ωn + τn

0 otherwise

(2)

where β(x) is any arbitrary polynomial function with values in the 
range [0, 1] with the following properties:

β(x) =
{

0 if x ≤ 0
and β(x) + β(1 − x) = 1 x ∈ [0,1]

1 if x ≥ 1
(3)

Many polynomial functions satisfy these properties. The follow-
ing polynomial first suggested by Daubechies [16] and used by 
Gilles [19] is also used in this research:

β(x) = x4(35 − 85x + 70x2 − 20x3) (4)

After the wavelet filters have been built (Eqs. (1) and (2)), 
the time series signal x(t) is decomposed into different frequency 
bands through empirical wavelet transform defined by

W ε
f (n, t) = F −1(x(ω)ψn(ω)

)
(5)

W ε
f (0, t) = F −1(x(ω)ϕn(ω)

)
(6)

where the details W ε
f (n, t) and approximation W ε

f (0, t) coeffi-
cients are obtained by the inner products of the signal with the 
empirical wavelets low-pass and band-pass filters, respectively, and 
F −1 denotes the inverse Fourier transform.
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