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A novel signal compression and reconstruction procedure suitable for guided wave based structural 
health monitoring (SHM) applications is presented. The proposed approach combines the wavelet packet 
transform and frequency warping to generate a sparse decomposition of the acquired dispersive signal. 
The sparsity of the signal in the considered representation is exploited to develop data compression 
strategy based on the Best-Basis Compressive sensing (CS) theory. The proposed data compression 
strategy has been compared with the transform encoder based on the Embedded Zerotree (EZT), a well 
known data compression algorithm. These approaches are tested on experimental Lamb wave signals 
obtained by acquiring acoustic emissions in a 1 m2 aluminum plate with conventional piezoelectric 
sensors. The performances of the two methods are analyzed by varying the compression ratio in the 
range 40–80%, and measuring the discrepancy between the original and the reconstructed signal. Results 
show the improvement in signal reconstruction with the use of the modified CS framework with respect 
to transform-encoders such as the EZT algorithm with Huffman coding.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Guided waves (GW) based approaches are an attractive mean 
for monitoring many important structural components in aerospace 
systems, land and marine transportation, civil infrastructures, and 
in the oil and gas industry [1]. In fact, approaches based on GW 
allow the inspection of large areas and provides excellent sensitiv-
ity to multiple types of damage [2,3]. Such capabilities have been 
widely exploited for instance in GW based methodologies for im-
pact/damage localization in plate-like structures.

In such applications, generally arrays of piezoelectric transduc-
ers are used to record acoustic emissions. Several array shapes 
have been investigated, including single-ring or fully populated cir-
cular patterns [4], two-dimensional square arrays [5] or more com-
plicated configurations realized with piezoelectric paint [6]. The 
typical mode of operation of these systems involves the phased 
actuation of transducers and the observation of several dynamic 
response measurements from large network of sensors. While the 
majority of sensor networks in use today employs a wired archi-
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tecture, development of wireless sensor networks has exploded in 
recent years [7].

The integration of wireless communication technologies into 
SHM methods has to be investigated since they eliminate the cost 
of cable deployment and reliability issues due to aging and de-
bonding of cables of traditional SHM systems, and have distinct 
advantages such as simple, cost-effective, flexible, and reconfig-
urable, thus allowing scalable installation [8].

However, in embedded sensing devices, the wireless connectiv-
ity may consume a large fraction of the available energy. There-
fore, in order to achieve long battery lifetime, performing data 
reduction locally, i.e. within the wireless smart sensors, is of pri-
mary importance [9,10]. By doing so communication traffic can be 
greatly reduced, minimizing the need of storing or transmitting 
large amount of multichannel data. Data reduction could consist 
either in the extraction of relevant information (such as time of 
flight or energy [11,12]) from the acquired waveform, or in signal 
compression. When the information extraction task is too much 
computationally onerous to be performed on a local embedded 
processor, the best option is to compress efficiently the acquired 
signal, and then to transmit it to a central unit where the signal is 
recovered and the processing is performed [13,14].

In this work, a signal compression strategy specifically dedi-
cated to Lamb wave signals for SHM, and aimed at achieving high 
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compression ratio with low distortion in signal recovery is pro-
posed. For signal compression, a novel approach is proposed whose 
starting point is the design of a suitable signal representation ba-
sis. The framework rely on the assumption that Lamb wave signals 
can be sparsified in a frequency warped domain [15]. The warp-
ing procedure allows to design a time–frequency decomposition 
matched to the dispersive behavior of Lamb waves, i.e. achieving 
a sparse representation of the signal; further improvement in the 
sparsity of the signal can be obtained with a proper basis designed 
by reshaping the scale domain through the warped Wavelet Packet 
(WP) decomposition [16,17]. In this article we use a dictionary 
of warped wavelets, adaptively selected in the warped wavelet 
packet decomposition tree by means of the Best Basis algorithm, to 
achieve maximally sparse representations. Moreover we have ana-
lyzed and studied the wavelet filter banks design to compute the 
adaptive warped wavelet basis.

The proposed dictionary selection procedure has been exploited 
within a Compressive sensing (CS) framework [18] through the 
minimization of a surrogate cost function and it has been com-
pared with a well-known data compression scheme, i.e. the Em-
bedded Zerotree (EZT) coding [19]. Both the approaches rely on the 
assumption that Lamb wave signals can be represented as sparse 
linear combination of basis functions.

The structure of this paper is as follows: in Section 2 the 
Wavelet Packet transform and the Best Basis parametrical opti-
mization is presented, while Section 3 is devoted to the data 
compression procedures: the Embedded Zerotree WP encoding is 
presented in Section 3.1, and the CS procedure with the Best Ba-
sis WP is described in Section 3.2. The proposed CS framework 
that exploits the Frequency Warped basis is detailed in Section 4. 
Experimental validations of the proposed CS framework and the 
comparison with the EZT coding are shown in Section 5. The ex-
periments consist in compressing and recovering dispersive guided 
wave signals acquired in an aluminum plate by using PZT sensors. 
The conclusions end the work.

2. Parametrized discrete wavelet packet transform

Multiscale transformations such as the wavelet transform (WT) 
analyze and represent efficiently ultrasonic [20,21,15,12] or elec-
trocardiogram signals [22]. Let us call x ∈ R

N the real-valued vector 
which may represent the discretized guided Lamb wave signal, in 
the considered application domain. The WT operator � can be 
used to decompose the signal x such that x = �α, where α is the 
N-dimensional WT coefficients vector.

The signal is said to be sparse in the new representation basis, 
if the vast majority of the entries of θ = [θ1, θ2, . . . , θN ], are zero-
valued or negligible. Sparse signals can be approximated using just 
the K largest entries of θ and setting all other terms to zero:

x ≈
K∑

k=1

θ(k)ψ(k), with K � N (1)

where the functions ψ(k) are elements of the wavelet basis.
As for the WT, the inner products between the signal and the 

elements of the adjoint operator �† which produce the wavelet 
coefficients can be computed efficiently by applying nested low-
pass h and high-pass g filters to the original signal x as suggested 
by the Multiresolution Analysis theory developed by Mallat [23]. 
Depending on the sequence (tree) of the low and high pass filters, 
different wavelet transforms take place.

As known, the frequency resolution which can be achieved by 
using an octave-band finite impulse response (FIR) filter is limited, 
especially at high frequencies. This limits the use of the Discrete 
Wavelet Transform (DWT) in guided waves based applications.

Fig. 1. Pruned (Best Basis) Wavelet Packet decomposition.

The Wavelet Packet (WP) transform is a generalization of the 
DWT decomposition where the outputs of the filters h, the signal 
approximations, and also the outputs of the filters g , the details, 
are filtered while stepping in the next decomposition level.

Alternatively, the number of filtering stages of the full WP tree 
can be limited (pruning) by selecting the decomposition depending 
on the signal characteristics, as schematically represented in the 
example in Fig. 1.

As for guided Lamb wave signals, a suitable pruning allows to 
obtain a discrete representation of the signal better matched to its 
inherent multi-scale structure.

To such aim, in this work a procedure that couples the prun-
ing (Best-Basis) technique [24] with the lattice parametrization of 
the wavelet basis [25] is proposed. More specifically, the wavelet 
basis is defined by a proper parametrization of the coefficients of 
the scaling filter h. For a finite impulse response filter of length 
L, there are L/2 + 1 conditions to ensure that the wavelets de-
fine an orthogonal Discrete Wavelet Packet Transform (DWPT) and 
thus there are L/2 − 1 degrees-of-freedom to design the scaling 
filter h. The lattice parametrization presented in [25] offers the 
opportunity to design orthogonal wavelet filters via unconstrained 
parameters.

In particular, for L = 6 the design parameters α and β gives

i = 0,1 : h[i] = 1

4
√

2
× [(1 + (−1)i cosα + sinα)

× (1 − (−1)i cosβ − sinβ) + (−1)i 2 sin β cosα]
i = 2,3 : h[i] = 1

2
√

2
× [(1 + cos(α − β)

+ sinα + (−1)i sin(α − β))]
i = 4,5 : h[i] = 1√

2
− h(i − 4) − h(i − 2)

The optimal parameters are chosen to minimize the distortion 
of the signal after decoding for a given compression rate, in the 
case of signal compression. The metric used to quantify the differ-
ence between the original signal x[n] and the reconstructed signal 
x̂[n] after decoding is the percent residual difference (PRD) (%)

PRD =
√∑

n(x[n] − x̂[n])2∑
n x[n]2

× 100 (2)

In other words, the selected decomposition is optimal in the 
sense that corresponds to a time frequency tiling that best con-
centrates the Lamb wave signal energy in few WP coefficients.



Download English Version:

https://daneshyari.com/en/article/6952062

Download Persian Version:

https://daneshyari.com/article/6952062

Daneshyari.com

https://daneshyari.com/en/article/6952062
https://daneshyari.com/article/6952062
https://daneshyari.com

