Digital Signal Processing 34 (2014) 1-15

www.elsevier.com/locate/dsp

Contents lists available at ScienceDirect

Digital Signal Processing

Digital
Signal _
Processing

A tutorial - game theory-based extended H infinity filtering
approach to nonlinear problems in signal processing

Jaechan Lim

@ CrossMark

Department of Future IT Innovation Laboratory and Creative IT Engineering, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea

ARTICLE INFO ABSTRACT

Article history:
Available online 11 August 2014

In this paper, we provide a tutorial for the applications of “game-theory-based extended H infinity
filtering (EHIF)” approach to various problems in disciplines of signal processing. The algorithm of this
filtering approach is similar to that of the extended Kalman filtering (EKF). Since its invention, the
Kalman filtering approach has been successfully and widely employed for many problems in scientific
and engineering fields, e.g. target tracking, satellite systems, control, communications, etc. Therefore, the
H infinity filtering approach also can be applied to all these problems. One big difference of EHIF from
the EKF approach is that we apply it with unknown noise statistics of the state and measurement. In
this tutorial, we introduce this non-well-known approach in spite of its practical usefulness, by providing
the step by step algorithm with example problems of a number of signal processing disciplines. We also
show that EHIF can outperform other approaches including the EKF that need to know the noise statistics
in their applications, in some scenarios. By the contribution of this tutorial, we look forward to easy, and
disseminative applications of EHIF to problems where, particularly, the EKF or particle filter could have
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been applied if noise statistics were known.
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1. Introduction

Many problems in the disciplines of signal processing areas,
a parameter (state) of interest is estimated based on some mea-
surement. Particularly, if the system model can be described by
the discrete-time-varying states with corresponding measurement,
we can estimate the states sequentially by applying dynamic fil-
ters. The dynamic state system that describes the hidden state x
and observed measurement y with zero mean and additive noise
processes of u and w at time step k can be described as follows:

X = g(X—1) +uy, (1)
Y =h®&) +wy, (2)

where bold face denotes a vector representation, g(-) and h(-) are
the given state transition and the observation function, respec-
tively, and are possibly nonlinear with respect to “x.” And, that
“whether the problem is linear or nonlinear” is determined by if
these functions are linear or nonlinear with respect to “x.” Ac-
cording to this system model, we can estimate the time-varying
state X, sequentially based on the corresponding measurement y;
at each time step by the dynamic filters such as the Kalman filter.
The minimum mean squared error (MMSE) estimator will obtain
the following:
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&;QAMSE = /ka(xo:li’1:k)dX1<, (3)

where “1:k” indicates the time indices from 1 to k, “”~ " denotes
an estimated version, and p(Xo.x|¥.,) is the posterior density. In
a particular case of: g(-) and h(-) are linear functions; and u; and
w), are Gaussian distributed, the Kalman filter (KF) is the optimal
MMSE estimator [1]. The KF estimates the state sequentially in a
closed form as follows:

X =X+ K[y — h@®o)], (4)

where [y is the Kalman gain that is computed by the algorithm
at each time step, and X, = g(&,lffl). The KF is successfully ap-
plied to many nonlinear problems as well, by the Taylor expansion
approximation. Since its invention [1], the KF has been success-
fully employed in many problems of scientific and engineering
fields [2-12] e.g. target tracking, time-series analysis, satellite sys-
tems, control, communications, bio-medical image classification,
speech recognition, etc.

The Kalman filter requires the knowledge of noise statistics in
its application. Therefore, it is assumed that the mean and the
variance of u and w are assumed to be known/obtained in their
applications. However, we may encounter the situation when we
may not able to know nor estimate the information of the noise
statistics in practice. Therefore, in this paper, we introduce the
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approach, i.e. H infinity filter (HIF) that we can apply in this situ-
ation. Although we need a preliminary tuning process for weight-
ing factors and the performance bound depending on the system
model. Although HIF algorithm is similar with that of the Kalman
filter, it is not a Bayesian approach because the estimate is not
obtained probabilistically in a form of (3). Although the HIF ap-
proach is very useful with satisfactory performance (particularly
in unknown noise statistics scenario), it is not well-known to re-
searchers. In this paper, we explain the step by step algorithm
of HIF (specifically, its extended version for non-linear problems)
with a number of example problems where HIF can be success-
fully applied. Besides, we assess the performance of extended HIF
(EHIF) with that of particle filtering [13-18], unscented Kalman fil-
tering [19-22]. Consequently, we expect the contribution of this
tutorial to easy, disseminative applications of EHIF for many im-
portant problems where, particularly, the Kalman filtering could
have been successfully applied if noise statistics were known. Fur-
ther reading related with EHIF can be referred to [23,24].

For readability facilitation, the list of abbreviations used in this
paper is provided as follows:

List of abbreviations

ACK: acknowledgment

BER: bit error rate

CIR: channel impulse response

CFO: carrier frequency offset

CTS: clear-to-send

CRPF: cost reference particle filter
CSMA|/CA: carrier sense multiple access with collision avoid-
ance

CUSUM: cumulative summary

DCF: distributed coordination function
DIFS: distributed inter-frame space
EHIF: extended H infinity filter

EKF: extended Kalman filter

GPF: Gaussian particle filter

HIF: H infinity filter

ISI: inter-symbol interference

KF: Kalman filter

MAC: medium access control

MMSE: minimum mean squared error
MSE: mean squared error

OFDM: orthogonal frequency division multiplexing
PF: particle filter

PHY: physical layer

PMF: probability mass function

QPSK: quadrature phase-shift keying
RMSE: root mean squared error

UKEF: unscented Kalman filter

RTS: request-to-send

SIFS: short inter-frame space

SNR: signal to noise ratio

SPF: sequential importance resampling particle filter
WLAN: wireless local area network

2. Extended H infinity filtering

The original, continuous-time H infinity filter (HIF) was em-
ployed in control area, and HIF has not been widely employed
due to its high level of mathematical understanding and the re-
quirement of a good system modeling. Recently proposed HIF ap-
plications are designed to guarantee the H infinity norm, which is
defined in (5) below (this is for the discrete-time case), less than
a prescribed value based on noise signals and resulting estima-
tion errors. In this estimation, the noise source can be arbitrary

while it is bounded by a certain threshold, and the worst possible
amplification of an error signal is minimized; therefore, it can be
thought of as a minimax approach. The approach is similar with
that of zero-sum game where minimax solution tries to minimize
the maximum expected point-loss independent of the opponent’s
strategy. In the game of HIF, the filter designer prepares for the
worst case that the opponent player (factors for noise that incurs
error) can provide. In other words, the goal of the filter is to ob-
tain a uniformly small estimation error for any combinations of
state process noise, measurement noise, and any initial states. In
the game of the discrete time HIF (so called “quadratic difference
game” [25] whereas it is called “quadratic differential game” for
continuous cases [26]), the filter minimizes the estimated state
error while the noise factors are maximized. Therefore, the min-
imizer obtains the optimal filtered estimate while the maximizer
tries to give the combination of “the worst-case disturbance” and
“the worst initial error condition.” Consequently, HIF does not re-
quire the prior knowledge of noise statistics, and deals with de-
terministic noisy disturbance in its applications [25] as opposed to
the case of the Kalman filtering. Whereas the EKF minimizes mean
squared error (MSE) of the estimate (equivalently, minimizing the
variance of the estimation error), EHIF is designed to minimize the
worst possible error. In the game, the loss (cost) for the estima-
tor is a measure of performance (which needs to be minimized for
better performance) in this filter. Discrete-time HIF can be inter-
preted as a minimax problem where the estimator, i.e. numerator
of (5) below, plays against the exogenous inputs and the initial
state uncertainty, i.e. denominator of (5) below. Accordingly, the
cost function for the designer in discrete-time HIF is defined as
follows:

N-1 N
Zk:o X — Xy ||§(k

= - N—1 ’
%0 = Roll%_ + XyZo (kg v + Iwill? 1)
PO Wk Vk

(5)

where N is the number of total time steps, X, is the estimated

state at time step k, uy is the state noise, wy is the observa-

tion noise, and x¢ is the initial state, respectively. i, Pk, Wy and

Vi are weighting factors, and || - | denotes the vector norm, i.e.

Huk||2W71 implies u,;'—Wflu;< where T denotes the matrix trans-
k

pose. The way how the weighting factors are determined is that,
for instance: if it is known that the second element of wj is small,
then Vi(2,2) is chosen to be small compared to other elements.
If the state (x) to be estimated is a scalar, we need a simpler pre-
liminary tuning process than a vector case for satisfactory tracking
performance.

Direct minimization of ] is not tractable; therefore, the perfor-
mance bound y is introduced, and it satisfies

sup J <y, (6)

where, “sup” denotes “supremum.” Then, J’ is defined as
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and, the problem becomes a matter of solving the following mini-
max problem:

min( max ]’) (8)
X \Uk,Wk.Xo

The EHIF approach which solves above minmax problem is given
by [25]

X =gX—1) + Hi[yr — hR1)] 9)
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