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This paper mainly focuses on the multi-sensor distributed fusion estimation problem for networked 
systems with time delays and packet losses. Measurements of individual sensors are transmitted to 
local processors over different communication channels with different random delay and packet loss 
rates. Several groups of Bernoulli distributed random variables are employed to depict the phenomena of 
different time delays and packet losses. Based on received measurements of individual sensors, local 
processors produce local estimates that have been developed in a new recent literature. Then local 
estimates are transmitted to the fusion center over a perfect connection, where a distributed fusion filter 
is obtained by using the well-known matrix-weighted fusion estimation algorithm in the linear minimum 
variance sense. The filtering error cross-covariance matrices between any two local filters are derived. The 
steady-state property of the proposed distributed fusion filter is analyzed. A simulation example verifies 
the effectiveness of the algorithm.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

During the past decades, the research on networked systems 
and sensor networks has attracted much attention since they make 
resources convenient for sharing and have broad applications in-
cluding target tracking, signal processing, multiple robots, and so 
on [1–3]. The random delays and packet losses are usually in-
duced by the network congestions during data transmissions of 
networked systems [4]. Therefore, the design on estimators and 
controllers for networked systems is challenging [5,6].

Several literatures have focused on single sensor systems with 
packets losses or/and time delays [7–14]. However, the research 
on multi-sensor systems subject to time delays and losses are not 
fully reported in the literatures. Multi-sensor information fusion 
has broad applications in target tracking, navigation and detec-
tion since they can fully make use of information from all sensors 
and overcome the defect of single sensor lying in the limitation 
of time and space. Thus, the study on multi-sensor information 
fusion is significant. Distributed fusion estimation plays an im-
portant role in information processing for multi-sensor systems. 
In [15], distributed consensus filters are designed for sensor net-
works, where each sensor implements the estimate based on the 
data from neighboring sensors. However, the communication time 
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delays are not taken into account. Since the distributed fusion has 
better robust and flexibility than the centralized fusion, many re-
sults on the distributed fusion estimation have been reported in 
recent years, including the decentralized filter with the parallel 
structure [16], the federal Kalman filter [17], the Maximum Likeli-
hood fusion filter [18], the unified optimal linear estimation fusion 
[19] and distributed fusion weighted by matrices [20]. Several fu-
sion estimation algorithms have been designed for multi-sensor 
systems with the transmission delays or packet losses in [21–24], 
where, however, the delays and packet losses are not taken into 
account simultaneously. In [25–27], distributed and centralized fu-
sion estimators have been respectively designed for packet losses 
and one-step random delays or variable delays. However, multi-
step random delays are not taken into account. Distributed track-
to-track fusion on Kalman-type filtering and retrodiction at arbi-
trary communication rates is also addressed for target tracking in 
[28,29], where the correlation among local filters is ignored.

Recently, a new model to depict the phenomena of multi-step 
random delays and packet losses during data transmissions in net-
worked systems has been developed and an optimal linear filter 
has been presented in [30]. In this paper, we will generalize the 
results for single sensor in [30] to the case of multiple sensors. We 
will investigate the distributed fusion filtering problem as shown 
in Fig. 1. Each sensor transmits its measurements to a local pro-
cessor over imperfect networks which lead to random delays and 
packet losses. Each local processor produces local estimate based 
on received measurements from sensor itself and then transmits 
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Fig. 1. Distributed fusion estimation scheme.

it to the fusion center over perfect connections without delays 
and losses. In the fusion center, all local filters are weighted by 
linear combination to give the fusion state filter. Several groups 
of Bernoulli distributed random variables with known probabili-
ties are introduced to depict different transmission delay and loss 
rates from different sensors to local processors. The filtering error 
cross-covariance matrices between any two local filters are de-
rived, which can be recursively computed with any initial values. 
Based on the local filters in [30] and the derived filtering error 
cross-covariance matrices, a distributed fusion filter weighted by 
matrices is obtained by using the linear minimum variance fusion 
algorithm [20]. At last, we analyze the steady-state property of the 
proposed distributed fusion filter. A sufficient condition for the ex-
istence of the steady-state fusion filter is given.

The rest of this paper is organized as follows. In Section 2, 
the system model and problem formulation are addressed. In Sec-
tion 3, the local optimal linear filter is given. In Section 4, the 
cross-covariance matrices between any two local filters are de-
rived. In Section 5, the stability and steady-state property are ana-
lyzed. Section 6 provides an example. Section 7 draws a conclusion.

2. Problem formulation

Consider the following discrete time-invariant linear systems 
with multiple sensors:

x(t + 1) = F x(t) + D w(t) (1)

y(i)(t) = C (i)x(t) + v(i)(t), i = 1,2, · · · , L (2)

where x(t) ∈ Rn is the state, y(i)(t) ∈ Rmi is the measured output 
of the ith sensor which will be transmitted to a local processor 
by networks, w(t) ∈ Rr and v(i)(t) ∈ Rmi are the process and mea-
surement noises, respectively. L is the number of sensors, and F , 
D and C (i) are constant matrices with suitable dimensions.

The estimation problem considered is shown in Fig. 1. Suppose 
that packet losses and random delays exist in data transmissions 
from individual sensors to local processors. At every time, the 
packet of each sensor is only sent once in order to avoid the net-
work congestion and only one packet or no packet is available at 
local processors. The packets received by the ith local processor 
can be described by the following mathematical model [30]:
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where α(i)
k (t), k = 0, 1, · · · , di; i = 1, 2, · · · , L are mutually uncorre-

lated Bernoulli distributed random variables with the probabilities 
P{α(i)

k (t) = 1} = ᾱ
(i)
k and P{α(i)

k (t) = 0} = 1 − ᾱ
(i)
k , ᾱ(i)

k ∈ [0, 1]. They 
are uncorrelated with other random variables.

The model (3) describes the phenomena of possible random 
di -step (i = 1, · · · , L) delays and packet losses during data trans-
missions from individual sensors to local processors over the net-
work. In order to explain the model, taking di = 1 as an example, 
then model (3) can be reduced to z(i)(t) = α

(i)
0 (t)y(i)(t) + (1 −
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α
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1 (t) = 0, 
(i.e., packet loss).

In this paper, 0 and I denote the zero and identity matrices of 
suitable dimensions, respectively. Our work is done based on the 
following assumptions.

Assumption 1. w(t) and v(i)(t) are correlated white noises with 
zero mean and variances Q w , Q (i)

v = Q (ii)
v , and cross-covariance 

matrices S(i) and Q (i j)
v , i �= j, i.e.,

E
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]
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where E is the mathematical expectation, T is the transpose oper-
ator, and δt1t2 is the Kronecker delta function.

Assumption 2. The initial state x(0) is uncorrelated with w(t) and 
v(i)(t) and satisfies

E
[
x(0)

] = μ0, E
[(

x(0) − μ0
)(

x(0) − μ0
)T] = P0 (5)

Our objective is to design the distributed fusion filter weighted by 
matrices in the linear minimum variance sense by the linear com-
bination of the local linear filters from local processors. We first 
give local linear filters based on the measurement data of individ-
ual sensors, then compute the filtering error covariance matrices 
including auto- and cross-covariance matrices, at last obtain the 
distributed fusion filter.

Remark 1. According to the definition of α
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( j)
k , i �= j; i, j = 1, · · · , L; k, p =

0, · · · , di .



Download English Version:

https://daneshyari.com/en/article/6952079

Download Persian Version:

https://daneshyari.com/article/6952079

Daneshyari.com

https://daneshyari.com/en/article/6952079
https://daneshyari.com/article/6952079
https://daneshyari.com

