
Automatica 68 (2016) 184–193

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

Stabilization and robustness analysis for a chain of exponential
integrators using strict Lyapunov functions✩

Michael Malisoff a, Miroslav Krstic b,1

a Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803-4918, USA
b Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093-0411, USA

a r t i c l e i n f o

Article history:
Received 27 July 2015
Received in revised form
10 November 2015
Accepted 15 January 2016
Available online 22 February 2016

Keywords:
Strict Lyapunov functions
Input-to-state stability

a b s t r a c t

We provide a new method for building strict Lyapunov functions for two dimensional chains of
exponential integrators, using nested exponential functions. One challenge is that the right sides of the
systems saturate, so they are not completely controllable. The strictness of the Lyapunov functions is key
to proving input-to-state stability (or ISS) properties with respect to additive uncertainty on the controls.
We show how a large class of tracking problems for nonlinear systems with positivity constraints on the
states can be solved using our theory.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

This paper continues our search (begun in Malisoff & Mazenc,
2009;Mazenc &Malisoff, 2006, 2010;Mazenc, Malisoff, & Bernard,
2009) for new constructions of strict Lyapunov functions that can
be used to prove stability and robustness properties for nonlinear
control systems. In some cases, stabilization problems can be
solved with the help of nonstrict Lyapunov functions, which are
proper and positive definite functions whose time derivatives are
nonpositive along all solutions of the closed loop system. By proper
and positive definiteness of a function V , wemean that V is zero at
the equilibrium, positive at all other states, and satisfies V (Z) →

∞ as |Z | → ∞ or as Z approaches the boundary of the state
space. However, nonstrict Lyapunov functions by themselves are
insufficient to solve asymptotic stabilization problems, since they
do not ensure convergence to the equilibrium. Instead, one often
uses nonstrict Lyapunov functions in conjunction with LaSalle
invariance or aMatrosov approach; see Khalil (2002) andMatrosov
(1962).
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However, even if one uses LaSalle invariance or standard
Matrosov approaches, there is usually no guarantee of robustness,
e.g., with respect to control or model uncertainty. This helped
motivate the ‘strictification’ approach from Malisoff and Mazenc
(2009), which converts nonstrict Lyapunov functions into strict
ones. A strict Lyapunov function is a proper and positive definite
function whose time derivative is negative along all trajectories of
the closed loop system at all points outside the equilibrium. Strict
Lyapunov functions allow us to robustify controls, e.g., to prove
robustness in the key sense of ISS; see Khalil (2002).

To see how this ‘robustification’ approach can be done in the
special case of time invariant nonlinear control affine systems of
the form ż = f (z)+g(z)u(z)with state space Rn for any n, assume
that we found a control u(z) such that the closed loop system is
globally asymptotically stable to the origin, and that we have a
strict Lyapunov function v for the closed loop system such that
−v̇(z) is a proper and positive definite function, or equivalently,
there is a class K∞ function α such that v̇(z) ≤ −α(|z|) holds
along all trajectories of the closed loop system; see Khalil (2002).
Assume that there are actuator errors, which we model by ż =

f (z)+g(z)(u(z)+δ)where δ is an unknownmeasurable essentially
bounded function. Then, by a simple application of the triangle
inequality that uses the control affineness, the closed loop system
ż = f (z) + g(z)(u♯(z) + δ) is input-to-state stable when we
use the augmented controller u♯(z) = u(z) − (∇v(z)g(z))⊤,
i.e., we subtract off the Lie derivative Lgv(z) = (∇v(z)g(z))⊤; see
Sections 5 and 8 for more on robustifying controls.

However, to implement the control u♯, one needs an explicit
closed form formula for the gradient ∇v of the strict Lyapunov
function in the formula for u♯, and this was another motivation
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for the strictification approach, but there are other motivations.
For instance, having strict Lyapunov functions in closed form of-
ten makes it possible to find explicit formulas for the comparison
functions in ISS estimates, and strict Lyapunov function construc-
tions also make it possible to quantify the effects of input or state
delays, and to perform backstepping.

In this paper, we use a Matrosov type strictification to prove a
stabilization result for a controlled chain of exponential integrators
in which the right sides of both equations saturate, so the
system is not completely controllable. While the system is time
invariant, many interesting tracking problems for time varying
bilinear systems can be transformed into chains of exponential
integrators that are covered by our theory, including cases where
there are positivity constraints on the state values and delays;
see Sections 7–8. Our strict Lyapunov function for the closed
loop system allows us to prove robustness under uncertainty
and delays, including ISS with respect to additive uncertainties
on the control for cases where the system is not control affine;
see Section 5. Our strictification uses just one auxiliary function,
but the choices of the functions needed for the strictification are
not obvious, which makes our work novel and interesting. We
believe that our newapproach for overcoming these challenges has
the potential for many other applications to higher dimensional
systems that are also not completely controllable.

2. Chain of exponential integrators model

We begin by studying systems of the form
ẋ = 1 − ey

ẏ = D∗(1 − eu) (1)

having the state spaceR2, where u is the control andD∗ is a positive
constant (but see below for cases where the 1’s in (1) are replaced
by more general nonlinear functions M1 and M2, Sections 5–6 for
caseswith uncertainties and timedelays, and Sections 7–8 forways
to transform many interesting systems with positivity constraints
on the states into the form (1)). The global stabilization of (1) is
nontrivial. By contrast, the local stabilization is easy, since any
linear feedback u = k1x + k2y for suitable constant ki’s will do.
For global stabilization, we have to contend with the fact that the
right sides of both equations in (1) saturate on theupper end at 1, so
the system is not completely controllable. However, the system is
not exponentially unstable in open loop. Instead, it is polynomially
unstable, e.g., x(t) = x0 + t(1 − ey(0)) when u = 0.

Attempting stabilizationwith backstepping is fruitless, because
backstepping would require both positive and negative values of
eu, so backstepping is too aggressive. There are valuable results
in the literature on bounded backstepping that lead to controls
that satisfy input constraints, including more general situations
where the dynamics are time varying or have delays; see Mazenc
and Bowong (2004) and Mazenc and Malisoff (2015). However,
these results either do not ensure ISS, or do not provide the strict
Lyapunov functions for (1) that are essential for what follows.

On the other hand, we can build controls that stabilize the
equilibrium (0, 0) of (1), and corresponding nonstrict Lyapunov
functions for the closed loop system, on R2. For instance, we can
use the following nonstrict Lyapunov function from Malisoff and
Krstic (2015):

V1(x, y) = x + exp(−x) − 1 +
1
D∗

(exp(y) − y − 1). (2)

In fact, the time derivative of (2) along all trajectories of (1) in
closed loop with the control

u = y − x (3)

satisfies

V̇1 = − exp(−x)(exp(y) − 1)2 (4)

and then stability of the closed loop system follows from LaSalle’s
theorem. However, (2) is not a strict Lyapunov function, since its
time derivative (4) is zero at all points where y = 0, so (2) is
not amenable to the robustification objective we discussed in the
introduction.

The system (1) naturally arises in the study of systems with
positivity constraints on the states, such as
Ẋ = (1 − Y )X
Ẏ = (D∗

− D)Y
(5)

on the state space (0, ∞)2, by setting x(t) = ln(X(t)/Xr), y(t) =

ln(Y (t)), and u(t) = ln(D(t)/D∗) for any constant Xr > 0
(but see Section 7 for much more general systems with positivity
constraints). In fact, the preceding argument proves the following,
by setting u = y − x:

Theorem 1. For all constants Xr > 0, the system (5), in closed
loop with the positive valued control D = D∗YXr/X, has the posi-
tively invariant set (0, ∞)2 and is globally asymptotically stable to
(Xr , 1). �

Before providing our general theory, we illustrate Theorem 1 using
simulations for (5) with the control from Theorem 1. We choose
Xr = 1 and D∗

= 5, with the initial condition (X(0), Y (0)) =

(e3, e−2), which corresponds to the initial condition (x(0), y(0)) =

(3, −2) in the transformed variables on R2. In Fig. 1, we plot the
corresponding trajectories for X(t), Y (t) and D(t) as solid lines,
with the set point levels given as dotted lines. Our simulations
illustrate our controller’s ability to ensure asymptotic convergence
of the state vector toward the equilibrium (1, 1).

To examine the overshoots in Fig. 1, we also provide a phase
portrait in Fig. 2 that shows four trajectories of the system in closed
loop with D = D∗YXr/X , superimposed by six level curves of our
nonstrict Lyapunov function V1 from (2). We choose Xr = 1 and
D∗

= 5. Clockwise from the top in Fig. 2, the solid lines show the
solutions (X(t), Y (t)) on the time interval [0, 2.5] and the initial
conditions (e4, e3), (e3, e2), (e3, e−2), and (e2, e−3), respectively.
The dotted lines in Fig. 2 show level curves of the nonstrict
Lyapunov function V1 from (2) with x(t) = ln(X(t)/Xr) and y(t) =

ln(Y (t)), with V1 = L for the following values of L: 0.01, 0.1, 0.3,
0.5, 0.75, and 1.45. The figure shows convergence of the solutions
towards (1, 1) and the crossings through the level curves of V1. See
Section 7 for large classes of systems with positivity constraints,
delays, and uncertainties and other changes of variables that
are covered by our theory. Such results require strict Lyapunov
functions. This motivates the next section, which transforms (2)
into a strict Lyapunov function for a suitable generalization of (1).

3. Main strict Lyapunov function construction

We construct an explicit strict Lyapunov function for a broad
class of systems of the form
ẋ = M1(x, y) − ey

ẏ = D∗(M2(x, y) − eu) (6)

(but see below for many other systems with positive state
constraints). The results in this section cover the system (1) in
closed loopwith (3) onR2, which plays a key role in our robustness
and delays analysis in Sections 5–8. We again allow D∗ to be any
positive constant, and we assume that M1 and M2 are any locally
Lipschitz functions that admit constants m̄1 ≥ 0 and m̄2 ≥ 0 such
that
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