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Node localization has played an important role in wireless sensor networks. In this paper, cooperative 
localization using received signal strength (RSS) measurements is addressed. The technique of weighted 
multidimensional scaling (WMDS) which relies on pairwise distance information between nodes is 
utilized in our algorithm development. Assuming that the transmit power is available, we first convert 
the original nonlinear localization problem to a system of linear equations, leading to computational 
attractiveness. It is also proved that the positioning accuracy of the WMDS solution attains the Cramér–
Rao lower bound at sufficiently small noise conditions. Furthermore, the proposed method is extended 
to the unknown transmit power case by exploiting the ratio of squared distance estimates extracted 
from the RSS information. The effectiveness of the WMDS approach is demonstrated via comparison with 
several conventional RSS-based positioning methods.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Node localization is a fundamental task for the operation and 
management of wireless sensor network (WSN) applications be-
cause most of the nodes are arbitrarily placed with their posi-
tions being unknown [1–3]. In a typical WSN, there are a few 
number of nodes with a priori known positions, or the so-called 
anchors, whose coordinates may be obtained using the global po-
sitioning system. The objective of node positioning is to locate 
the remaining sensors with the use of the pairwise measurements 
between the nodes, including the anchors. There are two local-
ization approaches, namely, non-cooperative and cooperative. In 
the former, only measurements between unknown-position nodes 
and anchors are utilized for positioning, while the latter uses all 
available measurements, which involve those among the unknown-
position nodes. Since the unknown-position nodes dominate, it is 
expected that the cooperative approach will yield higher localiza-
tion accuracy especially for a large network.

Time-of-arrival (TOA), time-difference-of-arrival (TDOA), re-
ceived signal strength (RSS) and angle-of-arrival (AOA) are popular 
measurement models for positioning [4]. The first three mod-
els can provide pairwise distance estimates while the last one 
contains direction information. Among them, the RSS-based po-
sitioning approach, which employs the propagation path loss of 
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signal traveling from one sensor to another, has been the subject 
of great interest because of its low complexity and cost in hard-
ware [1]. However, it is still a challenging task to locate the nodes 
because the RSS information is highly nonlinear with the unknown 
coordinates and the measurement noise is of multiplicative na-
ture [5]. Maximum likelihood (ML) estimator is a straightforward 
but highly nonlinear algorithm for RSS-based localization [6–8]. 
Although the ML method can obtain asymptotically optimal so-
lution when the statistics of the measurement errors are known, 
its objective function contains multiple maxima and minima, in-
dicating that global convergence is not guaranteed. Semidefinite 
relaxation (SDR) is another popular candidate and its main idea is 
to approximate the nonlinear ML problem to a convex program. 
The corresponding proposals include norm approximation [9], un-
scented transformation [10] and Taylor series expansion [11], but 
they can only provide suboptimal performance because of relaxing 
the original objective function. On the other hand, target localiza-
tion can be formulated as a sparse signal recovery problem [12,13]
and this sparsity-based approach can achieve high estimation ac-
curacy even at larger noise conditions. Due to the low complexity 
of linear operations, linear least squares (LLS) methods have also 
been proposed for RSS-based positioning particularly for a sin-
gle unknown-position node [14–20]. These LLS algorithms can be 
considered as non-cooperative methods in WSNs because they 
only exploit the RSS measurements between the unknown-position 
nodes and anchors. In order to attain a higher performance with 
low computational complexity, our aim is to devise a linear and 
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cooperative algorithm for RSS-based node localization where all 
pairwise measurements are utilized.

Multidimensional scaling (MDS) has been a computationally at-
tractive technique for analyzing experimental data in psychology, 
geography and molecular biology [21,22]. In [23], the MDS is ap-
plied for single-source localization via transforming all pairwise 
TOA information into the relative coordinates of sensors. The MDS 
methodology has also been formulated as subspace techniques in 
[24,25]. As the performance of [23–25] is suboptimal, a weighted 
MDS (WMDS) algorithm is developed in [26,27] to increase the po-
sitioning accuracy by employing a proper weighting matrix on the 
resultant system of linear equations. The WMDS approach has been 
extended to cooperative positioning of multiple nodes using TOA 
measurements in [28]. In this work, the WMDS technique is ex-
ploited to devise accurate and computationally efficient algorithms 
for RSS-based positioning.

The rest of the paper is organized as follows. The problem of lo-
cating multiple sensors using RSS measurements is formulated in 
Section 2 and the WMDS algorithm [28] for TOA-based localization 
is reviewed in Section 3. Node positioning algorithms based on the 
RSS measurements are developed in Section 4 where the cases of 
known and unknown transmit power are investigated. It is also 
proved that for the known transmit power scenario, the localiza-
tion performance of the WMDS method can attain the Cramér–Rao 
lower bound (CRLB) at sufficiently small noise conditions. Simula-
tion results are included in Section 5 to evaluate the performance 
of the proposed estimators by comparing with the SDR [11], ML 
and non-cooperative LLS [18,19] methods as well as CRLB. Finally, 
conclusions are drawn in Section 6.

Notation: We use [A]:,i , [A]:,i: j , [A]i: j,: and [A]i: j,l:m to represent 
the ith column, ith to jth columns, ith to jth rows, and entries 
in the intersection of ith to jth rows and lth to mth columns, of 
matrix A, respectively. The T , −1, † and ⊗ denote the matrix trans-
pose, inverse, pseudo-inverse and Kronecker product, respectively, 
while E is the expectation operator. The vec(A) corresponds to the 
vectorization of A, diag(a1, a2, · · · , ak) is a diagonal matrix with di-
agonal elements a1, a2, · · · , ak , and blkdiag(A1, A2, · · · , Ak) is block 
diagonal matrix with matrices A1, A2, · · · , Ak . The 1i , 0i× j , Ii and 
ei represent i × 1 vector with all elements 1, i × j zero matrix, 
i × i identity matrix and the ith column of I0.5(M+N)(M+N−1) , re-
spectively.

2. Problem formulation

We consider a network consisting of (M + N) sensors in a 
two-dimensional space. Let xi = [xi yi]T , i = 1, 2, · · · , M , M +
1, · · · , M + N , be the coordinates of the ith node. Without loss of 
generality, it is assumed that the first M sensors are the anchors 
while the coordinates of the last N nodes are the unknown pa-
rameters of interest. The distance between the ith and jth sensors, 
denoted by di, j , is

di, j =
√

(xi − x j)
2 + (yi − y j)

2, i, j = 1,2, · · · , M + N. (1)

According to [6,29], the RSS measurements are related to {di, j}
as:

Pi, j = P0 − 10α log10(di, j) + ni, j, i, j = 1,2, · · · , M + N, (2)

where Pi, j denotes the averaged power in decibel-milliwatts 
(dBm) with signal being transmitted from the ith sensor and 
received at the jth sensor, P0 is the transmit power or the mea-
sured signal strength at 1 meter distance in dBm, and α repre-
sents the path-loss factor that measures the rate at which the 
RSS decreases with distance. The {ni, j} are the average shadow 
fadings which are modeled as uncorrelated zero-mean Gaus-
sian variables with variances {σ 2

i, j}. It is assumed that P0, α

and/or {σ 2
i, j} are known a priori through a testing and calibra-

tion campaign [1,14]. Considering that all pairwise RSS measure-
ments are available and Pi, j = P j,i [6], and denoting the set
� = {(1, M + 1), · · · , (1, M + N), (2, M + 1), · · · , (2, M + N), · · · ,
(M, M + 1), · · · , (M, M + N), (M + 1, M + 2), · · · , (M + 1, M + N),

(M + 2, M + 3), · · · , (M + 2, M + N), · · · , (M + N − 1, M + N)}, 
the task is to estimate the positions of the nodes {xi | i =
M + 1, M + 2, · · · , M + N} using the known coordinates of anchors 
{xi | i = 1, 2, · · · , M}, path-loss factor α and RSS measurements 
{Pi, j | i, j ∈ �}. We first tackle the problem when P0 is available 
and then extend our development to the unknown transmit power 
scenario.

3. Review of WMDS algorithm [28]

In this section, the WMDS algorithm where TOA measurements 
are utilized for collaboratively locating multiple nodes is reviewed. 
In Section 4, this technique will then be modified for RSS-based 
positioning via converting {Pi, j} to distance measurements.

Let X = [Xa Xs] be the matrix of coordinates where Xa =
[x1 x2 · · · xM ] collects the known coordinates of all anchors while 
Xs = [xM+1 xM+2 · · · xM+N ] contains the unknowns to be deter-
mined. Without loss of generality, we assume that Xa1M = 02×1
which is fulfilled by a simple translation using xi −∑M

i=1 xi/M , i =
1, 2, · · · , M , and thus the actual sensor positions can be recovered 
in a similar manner. The classical MDS algorithm which employs 
the centroid of all sensors, denoted by xc = ∑M+N

i=1 xi/(M + N), as 
the origin, is based on the following matrix B:

B = XT
c Xc = JXT XJ = −0.5JDJ, (3)

where

Xc = X − xc1M+N (4)

J = IM+N − 1

M + N
1M+N 1T

M+N (5)

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 d2
1,2 d2

1,3 · · · d2
1,M d2

1,M+1 · · · d2
1,M+N

d2
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.
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d2
M+N,1 d2
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M+N,3 · · · d2

M+N,M d2
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⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(6)

We see that B and D are characterized by the pairwise distances. 
Note that XT X �= −0.5D because D is rank deficient. Aiming to de-
compose (3) into known and unknown components, we separate J
into upper and lower parts so that XJ can be rewritten as

XJ = [ Xa Xs ]

[
Ja

Js

]
= XaJa + XsJs = X̆sX̆a, (7)

where

Ja = [J]1:M,: =
[
IM − 1M 1T

M/(M + N) − 1M 1T
N/(M + N)

]
(8)

Js = [J](M+1):(M+N),:
= [−1N 1T

M/(M + N) IN − 1N 1T
N/(M + N)

]
(9)

X̆s = [I2 Xs] (10)

X̆a =
[

XaJa

Js

]
. (11)

Note that XaJa = [Xa 02×N ] with the use of Xa1M = 02×1. Employ-
ing
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