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The Generalized Sidelobe Canceler (GSC) is a beamforming scheme which is applied in many fields such 
as audio, RADAR, SONAR and telecommunications. Recently, the adaptive Reduced Rank GSC (RR-GSC) has 
been proposed for applications with a large number of sensors. Due to its dimensionality reduction step, 
the adaptive RR-GSC achieves an enhanced performance in comparison with the standard GSC. However, 
both standard GSC and RR-GSC have their performance drastically degraded in the presence of colored 
noise.
In this paper, we propose to extend further the GSC and the RR-GSC for colored noise scenarios. As shown 
in this paper, such improvement in colored noise scenarios can be obtained by incorporating a stochastic 
or a deterministic prewhitening step in the GSC and RR-GSC algorithms. Since the prewhitening increases 
the computational complexity, a block-wise reduced rank stochastic gradient GSC beamformer is also 
proposed. The block-wise step allows only one prewhitening step per block while in the previous schemes 
one per sample was needed. Another proposed advance in colored noise scenarios is the incorporation 
of the Vandermonde Invariance Transform (VIT). The VIT works as a pre-beamformer which reduces 
the interferent power of the undesired sources and the colored noise effect. We show by means of 
simulations the improved results even for highly correlated scenarios.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-SA 
license (http://creativecommons.org/licenses/by-nc-sa/3.0/).

1. Introduction

Beamforming is an important topic in array signal processing 
and has applications in several fields such as RADAR [1], SONAR 
[2], telecommunications [3] and audio [4]. In the literature, there 
are several adaptations of Direction of Arrival (DOA) estimation 
schemes for colored noise scenarios [5–7], and once the DOA in-
formation is obtained, it can be introduced to the beamformer. The 
addition of such constraints led to the development of beamform-
ers such as the Direct Form Processor (DFP), which includes the 
Linearly Constrained Minimum Variance (LCMV) and Linearly Con-
strained Constant Modulus (LCCM) [8], and the Generalized Side-
lobe Canceler (GSC) [9]. For real time applications, the necessity 
for adaptive algorithms grows and, with this need, adaptive ver-
sions of the GSC were proposed in earlier works [10,11,8].

However, when the number of elements in a sensor array is 
high, these algorithms suffer from computational complexity in-
crease. Therefore, recently, adaptive reduced rank DFP and GSC 
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schemes were also proposed in order to reduce the dimensionality 
of the adaptive filters. The rank reduction step also has a noise re-
moval effect, thus showing an enhanced performance [11,8]. These 
works use the constant modulus (CM) cost function [10], as it was 
shown to have a better accuracy for constant envelope signals. Yet, 
adaptive beamforming techniques using the GSC usually assume 
uncorrelated white noise in the receivers, which is not realistic.

For colored noise scenarios, prewhitening schemes have been 
successfully applied in combination with DOA estimation [5,6] and 
audio signal processing schemes [12]. The prewhitening schemes 
are divided into stochastic [6,12] and deterministic prewhiten-
ing [5]. In deterministic prewhitening, the noise may have a spe-
cific structure which can be exploited, while in the stochastic 
prewhitening, no structure is assumed. Moreover, there are also 
multidimensional prewhitening schemes for the case that the data 
has a tensor structure [13].

In this work, we propose to extend the least mean squares GSC 
(LMS-GSC) and the Reduced Rank LMS-GSC (RR-LMS-GSC) for col-
ored noise scenarios by incorporating a prewhitening step. We pro-
pose the prewhitened GSC schemes considering the deterministic 
prewhitening [5] and the stochastic prewhitening [6,12]. The col-
ored noise is usually concentrated in certain direction. Therefore, 
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to further enhance the GSC, the VIT [14] is also applied as a pre-
processing step. The colored noise can be also concentrated close 
to the desired signal direction, therefore a prewhitening step is 
also still needed along the VIT. The stochastic prewhitening needs 
the computation of one SVD at each iteration. In order to re-
duce the complexity of the stochastic prewhitening, we propose 
the block-wise reduced rank stochastic gradient GSC (BW-RR-GSC) 
beamformer.

This paper is divided into 6 sections including this introduc-
tion. In Section 2 we present the data model for colored noise. In 
Section 3 the classic beamformer designs for the LMS-GSC and RR-
LMS-GSC are briefly introduced. Then, in Section 4 we propose our 
high accuracy and low complexity GSC schemes by incorporating 
prewhitening steps, the VIT and a block-wise modification for col-
ored noise scenarios. In Section 5, simulations are shown and the 
results are drawn. Finally, Section 6 makes the conclusions about 
the work.

Notation Scalars are denoted by lower-case letters (a, b, . . .), vec-
tors are written as boldface lower-case letters (a, b, . . .) and matri-
ces as boldface capitals (A, B, . . .). The superscripts T, H and ∗ rep-
resent transpose, Hermitian transpose and complex conjugate of a 
term, respectively. The operator E{·} stands for the expected value 
operation.

2. Data model

We assume that d sources are transmitting different symbols 
at the n-th time instant. Since the sources are far away from the 
receiver, the narrowband wave fronts are considered planar. We 
assume a Uniform Linear Array (ULA) with M isotropic sensor ele-
ments with an inter-element spacing of � wavelengths. Therefore, 
we can mathematically represent the received symbols as

x(n) = a(θ0)s(n) + Aint(θ int)sint(n) + n(c)(n), (1)

where x(n) = [x0(n), . . . , xM−1(n)]T is the vector containing the re-
ceived symbols at time instant n, s(n) is the desired signal, sint(n)

is a vector with the interference symbols from the d − 1 interferes 
and n(c)(n) contains colored noise samples at the sensor elements. 
Note that n(c)(n) = Ln(n), where n(n) contains i.i.d. noise samples 
with Circularly Symmetric Complex Gaussian (CSCG) distributions. 
The matrix L ∈ C

M×M stands for the correlation matrix. For the 
special case where L is the identity matrix the noise becomes 
white at the sensors. The vector a(θ0) is the steering vector with a 
Vandermonde structure for the desired signal, where the elements 
of the vector a(θ0) are a function of the DOA of the desired signal 
defined as θ0 and are arranged in a column. The matrix Aint(θ int) ∈
C

M×d−1 is the steering matrix containing all the steering vectors 
of the interfering signals where their corresponding DOAs are com-
prised in the vector θ int ∈ C

d−1×1. The DOAs might also be repre-
sented by the spatial frequencies, i.e. spatially related phase delays, 
φ0 = −2π� sin θ0 and φint = −2π� sin θ int ∈C

d−1×1, respectively.
More generally, assuming a sliding window in which at time n

a snapshot of the current and the N − 1 previously transmitted 
symbols are allocated into a vector s and collecting the interfering 
signals into a matrix Sint(n) ∈ C

N×d−1 we can rewrite our model 
in a compact format

X(n) = a(θ0)sT(n) + Aint(θ int)ST
int(n) + N(c) ∈C

M×N , (2)

where X(n) = [x(n − N + 1), . . . , x(n)] and N(c) = L · N ∈ C
M×N . The 

matrix N ∈ C
M×N contains the N white noise samples for all M

sensors in the same manner as X contains N signal plus noise sam-
ples from the M sensors. The variable s(n) ∈ C

N×1 has the N latest 
samples for the desired signal and Sint ∈ C

N×d−1 has the N latest 
samples for the d − 1 interfering sources.

Fig. 1. LMS-GSC block diagram.

Here, we assume that the received symbols X(n) and the DOA 
of the desired signal θ0 are known at the receiver and we desire to 
find ŝ(n), which is an estimate of s(n). To find the DOA, we refer 
to [5–7] or alternatively we can assume that the position of the 
transmitter with respect to the receiver is known.

3. State-of-the-art beamformer designs

This section is divided into two subsections. In Section 3.1, we 
review the standard LMS-GSC beamformer, while in Section 3.2, 
we review the reduced rank LMS-GSC (RR-LMS-GSC).

3.1. LMS-GSC

The GSC algorithm turns a constrained problem into an uncon-
strained problem by introducing a blocking matrix, which is the 
orthogonal complement of the constraint a(θ0). In our case, the 
constraint is formed based on the steering vector of the desired 
signal, which can be estimated via [5–7].

In Fig. 1, the input signal x(n) passes through a beam pointed 
at the desired signal direction θ0 generating d(n) = aH(θ0)x(n). The 
same input signal also passes through a blocking matrix B which 
is the orthogonal complement of the constraint a(θ0). Conse-
quently, B blocks the desired signal and let ideally only Ai(θi)si(n)

pass. The filter w should then be adjusted so that it generates the 
interference signal y(n) that is subtracted from the desired sig-
nal d(n).

In Fig. 1, y(n) is given by

y(n) = wHxB(n), (3)

where xB(n) = Bx(n). As shown in Fig. 1, the error signal e(n) is 
used by the adaptive algorithm to adjust w. Once w converges, 
then we have that ŝ(n) = e(n). Since e(n) is free from interference 
it is also the system’s output signal.

The adaptation of w is computed via stochastic gradient of the 
following cost function

J lms(w) = E
{∣∣d(n) − wHxB(n)

∣∣2}
(4)

which gives the update rule for the adaptive part

w(n + 1) = w(n) + μlms∇w J lms(w) (5)

with μlms being the step size for the LMS-GSC.
We use the instantaneous estimates R̂xx = x(n)xH(n) and r̂dx =

d(n)x(n) [9] to find the stochastic gradient:

∇̂w J lms = 2Bx(n)xH(n)BHw − 2Bd(n)x(n). (6)

Now the stochastic gradient is inserted into LMS update rule for 
the GSC [9]:

w(n + 1) = w(n) + μlmsBx(n)xH(n)
(
a(θ0) − BHw

)
. (7)
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