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Frequency-estimation algorithms devised for complex sinusoids, including the maximum-likelihood (ML) 
approach, when operating on real sinusoidal signals, suffer from spectral interference due to the 
superposition of the aliasing components at negative and positive frequencies. This paper introduces 
a frequency estimation ML-like algorithm, based on a spectral-matching approach, that avoids such 
superposition effect by incorporating it in the signal/spectrum model. As a result, the proposed method is 
able to generate a more precise frequency estimate in comparison to previous approaches at a comparable 
computational cost, as endorsed by provided computational analyses and simulation results.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Frequency estimation is a standard problem in the signal pro-
cessing field with a plethora of applications ranging from radar 
and satellite/mobile communications to general audio or speech 
processing and metrology [1–5]. The theoretical basis for the opti-
mal frequency estimation, based on the maximum-likelihood (ML) 
criterion, of a discrete-time complex sinusoid embedded in noise 
was established in [6]. Later on, a series of algorithms based on 
the interpolation of the signal spectrum was devised to reduce 
the associated computational cost [7–15]. Generally speaking, all 
interpolation methods are computationally simple, requiring just 
a few operations in addition to the initial discrete Fourier trans-
form (DFT) computation, and provide a very good ML approxima-
tion. They all, however, were initially devised for noisy complex-
sinusoid signals, and, therefore, when dealing with real sinusoids, 
suffer from spectral superposition of the positive and negative fre-
quency complex sinusoids, which introduces estimation bias and 
increases estimation variance.
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To overcome such issues, a new frequency-estimation algorithm 
is considered based on a matched-spectrum concept, which corre-
lates the measured DFT with the theoretical spectrum of a sam-
pled sinusoid. The result is a new estimation method which yields 
very precise frequency estimates, particularly for high signal-to-
noise ratios (SNR), at a reduced (comparable to the spectrum-
interpolation algorithms) computational cost, as verified by com-
puter simulations. In addition, both its estimation accuracy and 
robustness to noise can be scaled at the expense of increased com-
putational complexity.

To introduce the proposed matched-spectrum (MS) method, 
this paper is organized as follows. Sections 2 and 3 revisit the ML 
and interpolation methods for frequency estimation, respectively. 
The proposed MS algorithm is introduced in Section 4, whereas 
Section 5 discusses some practical considerations on its implemen-
tation and performance. Section 6 includes some computational 
experiments illustrating the interesting results achieved by the 
proposed algorithm in comparison to previous schemes. Finally, 
Section 7 concludes the paper summarizing its technical contri-
butions.

2. Maximum-likelihood estimation

Assume a complex sinusoid s(n) = ã exp j(ω̃n + θ̃ ), of ampli-
tude ã, frequency ω̃, and phase θ̃ , is immersed in additive white 
Gaussian noise v(n) = vR(n) + jv I(n), whose imaginary part v I(n)

is the Hilbert transform of its real part vR(n). Assume also that 
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Fig. 1. ML frequency estimation ωML using the absolute value of the DFT: starting at 
the peak position ωk̄ of |Z(e jωk )|, estimate refinement is performed by numerical 
optimization of periodogram function, as given in Eq. (3).

v(n) has zero mean and variance σ 2
v . The corresponding sample 

vector z = [z(0)z(1) . . . z(N − 1)]T, where z(n) = s(n) + v(n), has 
the joint distribution

fz(p) =
(

1√
2πσ 2

v

)N

e
− 1

2σ2
v

∑N−1
n=0 [(x(n)−μp(n))2+(y(n)−νp(n))2]

, (1)

where p = [a, ω, θ]T is the parameter vector, x(n) and y(n) are the 
real and imaginary parts of z(n), respectively, and

μp(n) = ã cos(ω̃n + θ̃ ), νp(n) = ã sin(ω̃n + θ̃ ). (2)

The maximum-likelihood (ML) parameter estimator pML =
[aML, ωML, θML]T of p, given the observations z, is the value of p
that maximizes fz(p) given in Eq. (1). After some algebraic devel-
opment, one has that [6]:

• ωML is the value of ω that maximizes the periodogram

∣∣A(ω)
∣∣ =

∣∣∣∣∣ 1

N

N−1∑
n=0

z(n)e− jωn

∣∣∣∣∣. (3)

• θML is the argument of A(ωML).
• aML = |A(ωML)|.

These results suggest a simple strategy for estimating the ML pa-
rameters:

1. Determine the discrete Fourier transform (DFT), Z(e jωk ), of the 
sequence z and determine the (discrete) frequency value ωk̄
associated with the maximum of its absolute value [16].

2. Starting at ωk̄ , use some numerical optimization algorithm to 
maximize |A(ω)| in Eq. (3) to determine ωML [6], as illustrated 
in Fig. 1.

3. Once ωML is estimated, compute θML = arg{A(ωML)} and aML =
|A(ωML)|, as indicated above.

3. Fine adjustment by interpolation

Obtaining the ML estimate by optimizing the periodogram, be-
sides being a cumbersome procedure due to the nature of the 
function evaluated at each iteration, may also not always con-
verge to the desired solution, as analyzed in [17]. An alternative 
approach, which is quite simple and robust, is based on the inter-
polation of the DFT mainlobe points, which enables us to estimate 
the frequency deviation δ such that ωML = ωk̄ + δ, as indicated in 
Fig. 2.

Among the several interpolation-based approaches found in the 
literature [7–15], one of the most successful employs [13]

δ̂

Δ
=

√
1 + 8γ 2 − 1

4γ
, (4)

Fig. 2. ML frequency estimation ωML using the absolute value of the DFT: starting 
at the peak position ωk̄ of |Z(e jωk )|, a frequency deviation δ is estimated by inter-
polation of side points at ωk̄−1 and ωk̄+1.

where Δ = 2π Fs
N is the DFT frequency resolution (with the sam-

pling frequency Fs in samples per second), as represented in Fig. 2, 
and

γ = R−1 − R1

2R0 + R−1 + R1
, (5)

with Rk , for k ∈ Z, being defined as

Rk = real
{

Z
(
e jωk̄+k

) × conj
{

Z
(
e jωk̄

)}}
, (6)

where conj{·} denotes the complex-conjugate operation. An exten-
sion of this interpolator which employs four neighboring points 
and the periodogram peak at ωk̄ is also presented in [13], with 
slightly superior computational complexity and estimation perfor-
mance.

All these complex-sinusoid based algorithms, including the re-
cent proposal given in [14], suffer from spectral leakage due to the 
spectral component centered at ω = −ω̃. This generates some bias 
on the final frequency estimate of real-sinusoid signals. The pro-
posed method attempts to prevent this issue using a model-based 
approach, as described in the following section.

4. Proposed method: matched spectrum

The proposed matched-spectrum (MS) scheme attempts to 
match the DFT of the observation data, as determined in the 
first stage of all previous algorithms, to the theoretical spectrum 
Sω̃,θ̃ (e jωk ) of a frequency-ω̃ and phase-θ̃ sinusoid sampled at the 
same DFT frequency values ωk . For that matter, one searches for 
the optimal values ω̃ of ω and θ̃ of θ that maximize the correla-
tion

R̃k0(ω, θ) =
∑k0

k=−k0
Z(e jωk̄+k ) × conj{Sω,θ (e jωk̄+k )}√∑k0

k=−k0
Sω,θ (e jωk̄+k ) × conj{Sω,θ (e jωk̄+k )}

, (7)

where k0 is the interval of interest around k̄. In practice, this cor-
relation function has the following interesting properties:

• In the noiseless case, it has a global maximum at ω = ω̃ and 
θ = θ̃ .

• When ω ≈ ω̃ and θ ≈ θ̃ , it does not present local minima, even 
in the presence of noise, as illustrated in Section 6, allowing 
a simple line-search procedure to determine ω̃ and θ̃ with a 
very high precision.

• Its value is readily approximated even for small values of k0, 
including the trivial case k0 = 1.

• For given values of ω and θ , its evaluation requires only 
2(2k0 + 1) complex multiplications and a single complex di-
vision (see detailed algorithm at the end of this section), in 
contrast to the periodogram function defined in Eq. (3), whose 
complexity is linear with the number of signal samples N .
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