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Frequency-estimation algorithms devised for complex sinusoids, including the maximum-likelihood (ML)
approach, when operating on real sinusoidal signals, suffer from spectral interference due to the
superposition of the aliasing components at negative and positive frequencies. This paper introduces
a frequency estimation ML-like algorithm, based on a spectral-matching approach, that avoids such
superposition effect by incorporating it in the signal/spectrum model. As a result, the proposed method is
able to generate a more precise frequency estimate in comparison to previous approaches at a comparable
computational cost, as endorsed by provided computational analyses and simulation results.
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1. Introduction

Frequency estimation is a standard problem in the signal pro-
cessing field with a plethora of applications ranging from radar
and satellite/mobile communications to general audio or speech
processing and metrology [1-5]. The theoretical basis for the opti-
mal frequency estimation, based on the maximum-likelihood (ML)
criterion, of a discrete-time complex sinusoid embedded in noise
was established in [6]. Later on, a series of algorithms based on
the interpolation of the signal spectrum was devised to reduce
the associated computational cost [7-15]. Generally speaking, all
interpolation methods are computationally simple, requiring just
a few operations in addition to the initial discrete Fourier trans-
form (DFT) computation, and provide a very good ML approxima-
tion. They all, however, were initially devised for noisy complex-
sinusoid signals, and, therefore, when dealing with real sinusoids,
suffer from spectral superposition of the positive and negative fre-
quency complex sinusoids, which introduces estimation bias and
increases estimation variance.
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To overcome such issues, a new frequency-estimation algorithm
is considered based on a matched-spectrum concept, which corre-
lates the measured DFT with the theoretical spectrum of a sam-
pled sinusoid. The result is a new estimation method which yields
very precise frequency estimates, particularly for high signal-to-
noise ratios (SNR), at a reduced (comparable to the spectrum-
interpolation algorithms) computational cost, as verified by com-
puter simulations. In addition, both its estimation accuracy and
robustness to noise can be scaled at the expense of increased com-
putational complexity.

To introduce the proposed matched-spectrum (MS) method,
this paper is organized as follows. Sections 2 and 3 revisit the ML
and interpolation methods for frequency estimation, respectively.
The proposed MS algorithm is introduced in Section 4, whereas
Section 5 discusses some practical considerations on its implemen-
tation and performance. Section 6 includes some computational
experiments illustrating the interesting results achieved by the
proposed algorithm in comparison to previous schemes. Finally,
Section 7 concludes the paper summarizing its technical contri-
butions.

2. Maximum-likelihood estimation

Assume a complex sinusoid s(n) = dexp j(@n + 6), of ampli-
tude @, frequency @, and phase 6, is immersed in additive white
Gaussian noise v(n) = vg(n) + jvi(n), whose imaginary part vy(n)
is the Hilbert transform of its real part vg(n). Assume also that
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Fig. 1. ML frequency estimation wy using the absolute value of the DFT: starting at
the peak position w; of |Z(e/*¥)|, estimate refinement is performed by numerical
optimization of periodogram function, as given in Eq. (3).

v(n) has zero mean and variance 03. The corresponding sample
vector z = [2(0)z(1)...z(N — 1)]T, where z(n) = s(n) + v(n), has
the joint distribution
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where p = [a, w, 6]7 is the parameter vector, x(n) and y(n) are the
real and imaginary parts of z(n), respectively, and

fa(p) = (1)

up() =dcos(@n+0),  vp(n)=asin(@n+6). (2)

The maximum-likelihood (ML) parameter estimator pyL =
[amL, omL, Om]T of p. given the observations z, is the value of p
that maximizes fz(p) given in Eq. (1). After some algebraic devel-
opment, one has that [6]:

e wy is the value of w that maximizes the periodogram

N-1

% Z z(n)e~jen

n=0

|A(w)| = : (3)

e Oy is the argument of A(wmy).
e ayL = |A(om)].

These results suggest a simple strategy for estimating the ML pa-
rameters:

1. Determine the discrete Fourier transform (DFT), Z (e/®*), of the
sequence z and determine the (discrete) frequency value wy
associated with the maximum of its absolute value [16].

2. Starting at wy, use some numerical optimization algorithm to
maximize |A(w)| in Eq. (3) to determine wyy [6], as illustrated
in Fig. 1.

3. Once wyy is estimated, compute Gy = arg{A(wmr)} and ay =
|A(wmr)|, as indicated above.

3. Fine adjustment by interpolation

Obtaining the ML estimate by optimizing the periodogram, be-
sides being a cumbersome procedure due to the nature of the
function evaluated at each iteration, may also not always con-
verge to the desired solution, as analyzed in [17]. An alternative
approach, which is quite simple and robust, is based on the inter-
polation of the DFT mainlobe points, which enables us to estimate
the frequency deviation § such that wm = wj, + 8, as indicated in
Fig. 2.

Among the several interpolation-based approaches found in the
literature [7-15], one of the most successful employs [13]
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Fig. 2. ML frequency estimation wy. using the absolute value of the DFT: starting
at the peak position @y of |Z(e/**)|, a frequency deviation § is estimated by inter-
polation of side points at w;_; and wy ;.

where A = 2T is the DFT frequency resolution (with the sam-
pling frequency F; in samples per second), as represented in Fig. 2,

and

R_1—Rq
— — 5
Y= R0+ R1 + Ry )
with Ry, for k € Z, being defined as
Ry = real{Z (ek+x) x conj{ Z(e/*%)}}, (6)

where conj{-} denotes the complex-conjugate operation. An exten-
sion of this interpolator which employs four neighboring points
and the periodogram peak at wj is also presented in [13], with
slightly superior computational complexity and estimation perfor-
mance.

All these complex-sinusoid based algorithms, including the re-
cent proposal given in [14], suffer from spectral leakage due to the
spectral component centered at w = —®. This generates some bias
on the final frequency estimate of real-sinusoid signals. The pro-
posed method attempts to prevent this issue using a model-based
approach, as described in the following section.

4. Proposed method: matched spectrum

The proposed matched-spectrum (MS) scheme attempts to
match the DFT of the observation data, as determined in the
first stage of all previous algorithms, to the theoretical spectrum
Scb,(;(efwk) of a frequency-@ and phase-6 sinusoid sampled at the
same DFT frequency values wy. For that matter, one searches for
the optimal values & of w and 6 of 6 that maximize the correla-
tion

E(J:fko Z(eI¥k+k) x conj{S, g (e/%k+))

VR Sw (@) x conj{S, (€751

where kg is the interval of interest around k. In practice, this cor-
relation function has the following interesting properties:

Ry (@, 6) =

(7)

e In the noiseless case, it has a global maximum at w = & and
6=06.

e When w ~ @ and 6 ~ 6, it does not present local minima, even
in the presence of noise, as illustrated in Section 6, allowing
a simple line-search procedure to determine @ and 6 with a
very high precision.

e Its value is readily approximated even for small values of kg,
including the trivial case ko = 1.

e For given values of w and 6, its evaluation requires only
2(2kg + 1) complex multiplications and a single complex di-
vision (see detailed algorithm at the end of this section), in
contrast to the periodogram function defined in Eq. (3), whose
complexity is linear with the number of signal samples N.



Download English Version:

https://daneshyari.com/en/article/6952091

Download Persian Version:

https://daneshyari.com/article/6952091

Daneshyari.com


https://daneshyari.com/en/article/6952091
https://daneshyari.com/article/6952091
https://daneshyari.com

