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Real-world signals are often not band-limited, and in many cases of practical interest sampling points are 
not always measured regularly. The purpose of this paper is to propose an irregular sampling theorem 
for the fractional Fourier transform (FRFT), which places no restrictions on the input signal. First, we 
construct frames for function spaces associated with the FRFT. Then, we introduce a unified framework 
for sampling and reconstruction in the function spaces. Based upon the proposed framework, an
FRFT-based irregular sampling theorem without band-limiting constraints is established. The theoretical 
derivations are validated via numerical results.
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1. Introduction

The fractional Fourier transform (FRFT) [1,2] is a generalization 
of the Fourier transform (FT) with additional free angle parameters. 
It can be interpreted as a rotation by an angle α in the time-
frequency plane [3]. The FRFT can extend the utilities of the FT and 
has received much attention in recent years due to its numerous 
applications [1–9], including quantum physics, optics, radar, com-
munications, signal processing, etc.

The FRFT of a function f (t) ∈ L2(R) is defined as [2]

Fα(u) = Fα
{

f (t)
}
(u) �

∫
R

f (t)Kα(u, t)dt (1)

where Fα denotes the FRFT operator, and kernel Kα(u, t) is given 
by

Kα(u, t) =
⎧⎨
⎩ Aαe j u2+t2

2 cot αe− jtu csc α, α �= kπ
δ(t − u), α = 2kπ
δ(t + u), α = (2k − 1)π

(2)

where Aα = √
(1 − j cotα)/2π and k ∈ Z. Conversely, the inverse 

FRFT with respect to angle α is the FRFT with angle −α. In gen-
eral, we only consider the case of 0 < α < π , since (1) can easily 
be extended outside the interval (0, π) by noting that F2πk is 
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the identity operator for any integer k and Fα has the additivity 
property Fα+β{ f (t)} = Fα{Fβ{ f (t)}}. Note that when α = π/2, 
(1) reduces to the FT.

Sampling theory plays a crucial role in signal processing and 
communications, which allows real-life signals in the continuous 
domain to be acquired, represented, and processed in the discrete 
domain. In the sense of the FRFT [10–21], the most classical sam-
pling result is the theorem of Xia [10], which states that for a 
finite energy π sinα-fractional band-limited signal f (t), i.e., signal 
f (t) ∈ L2(R) whose FRFT has support in [−π sinα, π sinα],

f (t) =
∑
n∈Z

f [n] sinc(t − n)e− j t2−n2
2 cot α (3)

where sinc(·) � sinπ(·)/π(·), and a normalized sampling step is 
used. Mathematically, Xia’s sampling procedure is equivalent to 
computing the orthogonal projection of the input signal f (t) on to 
the space Bα = span{sinc(t −n)e− j t2−n2

2 cot α}n∈Z of fractional band-
limited signals. Unfortunately, the procedure is not appropriate for 
non-bandlimited signals. However, if we substitute φ(t) for sinc(t)
in the space Bα , then Bα is exactly the function space associated 
with the FRFT [22], i.e.,

Vα(φ) = span
{
φn,α(t) � φ(t − n)e− j t2−n2

2 cot α
}

n∈Z ⊂ L2(R). (4)

Realizing this property, Shi et al. [22] extended (3) to space Vα(φ). 
Specifically, let φ(t) be a continuous function in L2(R) such that 
{φn,α(t)}n∈Z is a Riesz basis for space Vα(φ) and {φ[n]}n∈Z belongs 

to �2(Z). There exists a function s(t) ∈ L2(R) with s(t)e− j t2
2 cot α ∈

Vα(φ) such that [22]
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f (t) =
∑
n∈Z

f [n]s(t − n)e− j t2−n2
2 cot α (5)

holds in L2(R) for any f (t) ∈ Vα(φ) if and only if 1√
2πΦ̃(u csc α)

∈
L2[0, 2π sinα] holds, where Φ̃(u cscα) denotes the discrete-time 
FT (with its argument scaled by cscα) of φ[n]. It is clear that 
(5) applies only to the case of regular sampling. In many real 
applications, sampling points are not always measured regularly. 
Sometimes sampling steps need to be fluctuated according to in-
put signals so as to reduce the number of samples as well as 
computational complexity. There are also many cases where un-
desirable jitter exists in sampling instants. Some communication 
systems may suffer from random delay due to channel traffic con-
gestion and encoding delay. In such cases, the sampling system 
will become more efficient when a perturbation factor is consid-
ered. Towards this end, Zhao et al. [23] introduced an extension of 
Paley–Wiener’s 1

4 -Theorem based upon the linear canonical trans-
form, which is a generalization of the FRFT. However, the extension 
is appropriate to the case of band-limited signals only. Therefore, 
it is desirable to derive an irregular sampling theorem for the FRFT 
without band-limiting constraints. The purpose of the present pa-
per is to fill this gap by exploiting the theory of frames. We first 
construct frames for function spaces associated with the FRFT, and 
then propose a unified framework for sampling and reconstruction 
in the function spaces. Further, without band-limited assumption, 
we establish an irregular sampling theorem for the FRFT. Numeri-
cal results are also presented.

The remainder of this paper is organized as follows. In Sec-
tion 2, notation is introduced, and some facts of the frame the-
ory and the discrete-time FRFT are briefly reviewed. In Section 3, 
a unified framework for FRFT-based sampling and reconstruction 
in function spaces is proposed. Then, an irregular sampling theo-
rem of the FRFT without band-limiting constraints is established 
in Section 4. In Section 5, numerical results are given. Finally, con-
cluding remarks are drawn in Section 6.

2. Preliminaries

Continuous signals are denoted with parentheses, e.g., f (t), 
t ∈ R, and discrete signals with brackets, e.g., q[n], n ∈ Z. The 
scalar product of two functions f (t) and g(t) in L2(R) is defined 
as 〈 f , g〉 = ∫

R
f (t)g∗(t)dt , where ∗ in the superscript denotes the 

complex conjugate. The norm of a function f (t) ∈ L2(R) is de-
fined as ‖ f ‖ = 〈 f , f 〉1/2. For a measurable function g(t) on R, 
let ‖g‖∞ = ess sup |g(t)| and ‖g‖0 = ess inf | f (t)| be the essential 
supremum and infimum of |g(t)|, respectively. The characteristic 
function of a measurable subset E ⊂ R is denoted with χE (t), 
where χE(t) = 1, t ∈ E , and 0 otherwise.

A function sequence {ϕn(t)}n∈Z in a Hilbert space H is said to 
be a frame if there exists a constant C ≥ 1 such that

C−1‖ f ‖2 ≤
∑
n∈Z

∣∣〈 f (t),ϕn(t)
〉∣∣2 ≤ C‖ f ‖2 (6)

holds for any f (t) ∈ H. If the removal of one element ϕm(t) ren-
ders the function sequence {ϕn(t)}n �=m no longer a flame, then it is 
called an exact frame. An exact frame is a Riesz basis. Obviously, 
a Riesz basis is also a frame [24]. For any frame {ϕn(t)}n∈Z of H, 
there exists a so-called dual frame {ϕ̃n(t)}n∈Z ⊂H such that

f (t) =
∑
n∈Z

〈
f (t), ϕ̃n(t)

〉
ϕn(t) =

∑
n∈Z

〈
f (t),ϕn(t)

〉
ϕ̃n(t) (7)

holds in L2(R) for any f (t) ∈ H. Take a linear operator T on H
defined as

T
{

f (t)
} =

∑
n∈Z

〈
f (t),ϕn(t)

〉
ϕn(t). (8)

Then, 〈T { f (t)}, f (t)〉 = ∑
n∈Z |〈 f (t), ϕn(t)〉|2. Eq. (6) implies that 

the operator T is bounded, self-conjugate, and invertible. It is easy 
to see that the function sequence T −1{ϕn(t)}n∈Z is a dual frame of 
frame {ϕn(t)}n∈Z , and T is called a frame transform of {ϕn(t)}n∈Z . 
The scalar sequence {〈 f (t), ϕn(t)〉}n∈Z is called a moment sequence 
of f (t) to frame {ϕn(t)}n∈Z . Let f (t) = ∑

n∈Z cnϕn(t). If {cn}n∈Z is 
a moment sequence of a function to {ϕn(t)}n∈Z , then it must be

cn = 〈
T −1{ f (t)

}
,ϕn(t)

〉
, ∀n ∈ Z. (9)

This follows from the fact that cn = 〈h, ϕn(t)〉 for some function 
h(t) ∈ H, and T −1{ f (t)} = ∑

n∈Z〈h(t), ϕn(t)〉T −1{ϕn(t)} = h(t) in 
L2(R).

There are two different definitions [12,25] for the discrete-time 
FRFT (DTFRFT) in the literature. We adopt the one introduced in 
[12], which has a simple structure. The DTFRFT of a sequence 
{q[n]}n∈Z is defined as [12]

Q̃ α(u) =
∑
n∈Z

q[n]Kα(u,n). (10)

Note that if {q[n]}n∈Z ∈ �2(Z), Q̃ α(u) ∈ L2[0, 2π sinα]. Conversely, 
the inverse DTFRFT is given by q[n] = ∫

I Q̃ α(u)K∗
α(u, n)du, where 

I � [0, 2π sinα]. The DTFRFT has the following chirp-periodicity 
[22]:

Q̃ α(u + 2π sinα)e− j (u+2π sin α)2
2 cot α = Q̃ α(u)e− j u2

2 cot α. (11)

3. A unified framework for sampling and reconstruction in 
function spaces associated with the FRFT

For a continuous-time function φ(t) ∈ L2(R), define

Gφ,α(u) �
∑
k∈Z

∣∣Φ(u cscα + 2kπ)
∣∣2

(12)

where Φ(u cscα) denotes the FT (with its argument scaled 
by cscα) of φ(t). Generally speaking, the function sequence 
{φn,α(t)}n∈Z with the form defined in (4) is not a Riesz basis for 
Vα(φ). In fact, it is a Riesz basis for Vα(φ) if and only if [21,22]

0 ≤ ∥∥Gφ,α(u)
∥∥

0 ≤ ∥∥Gφ,α(u)
∥∥∞ < ∞. (13)

In this case, φ(t) is said to be a stable generator for Vα(φ). More-
over, the function sequence {φn,α(t)}n∈Z is an orthonormal basis 
of Vα(φ) if and only if Gφ,α(u) = 1 holds for almost everywhere 
u ∈ R. In particular, if we choose φ(t) = sinc(t), the stable space 
Vα(sinc) is exactly the space of all π sinα-fractional band-limited 
signals with finite energy. Sampling in Vα(sinc) leads to Xia’s sam-
pling theorem of the FRFT for regularly sampled signals [10]. In 
this paper, we will present an irregular sampling theorem of the 
FRFT in Vα(φ) for a general stable generator φ(t). We also need 
φ(t) = O ((1 + |t|)−ε) for some ε > 1/2. For any f (t) ∈ Vα(φ), it 
follows from (4) that

f (t) =
∑
m∈Z

c[m]φ(t − m)e− j t2−m2
2 cot α (14)

where {c[m]}m∈Z ∈ �2(Z). It is easy to see that∣∣∣∣∑
m∈Z

c[m]φ(t − m)e− j t2−m2
2 cot α

∣∣∣∣
2

≤
∑
m∈Z

∣∣c[m]∣∣2 ∑
m∈Z

∣∣φ(t − m)
∣∣2

(15)

which implies that the series defined in (14) point-wise converges 
to a continuous function in Vα(φ). Without loss of generality, we 
can take any f (t) ∈ Vα(φ) as a continuous function.
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