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a b s t r a c t

We study a distributed optimal consensus problem of continuous-time multi-agent systems with a
common state set constraint. Each agent is assignedwith an individual cost functionwhich is coercive and
convex. A distributed control protocol is to be designed to guarantee a consensus, and in the meanwhile
reach theminimizer of the aggregate cost functions within the constraint set. Three terms are included in
the protocol: local averaging, local projection, and local subgradient with a diminishing but persistent
gain. It is shown that the constrained optimal consensus can be achieved under a uniformly jointly
connected communication network with bounded time-varying edge weights.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

As a basic problem in distributed cooperative control for
multi-agent systems, consensus has gained much attention from
researchers in recent years. The objective of distributed consensus
is to reach an agreement of a certain variable of common interest by
local information exchange. Many algorithms have been proposed
and found widespread applications in coordination, rendezvous,
flocking, source localization, etc. (Chai, Lin, Lin, & Zhang, 2014;
Jadbabaie, Lin, &Morse, 2003; Lin,Morse, &Anderson, 2003; Olfati-
Saber, 2006).

In many practical problems, consensus with constraints are
to be considered. The constraints include state constraint (Sun,
Jin Ong, & White, 2013), motion constraint of maximum speed
and acceleration (Lin et al., 2003), and network constraint to
stay connected (Zavlanos & Pappas, 2008). By decomposition
and incremental subgradient methods, Johansson, Speranzon,
Johansson, and Johansson (2008) dealtwith the consensus problem
subject to convex input constraints and linear state constraints.
With model predictive control of one-step horizon, Franceschelli,
Egerstedt, Giua, and Mahulea (2009) were able to drive a network
of agents to their centroid while staying connected and satisfying
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the motion constraint. Another focus is on constraint of the final
consensus value. Using projection, Shi, Johansson, andHong (2013)
computed the consensus point within the non-empty intersection
of different convex sets. A similar problem was addressed in Lee
and Mesbahi (2011) via logarithmic barrier functions.

On the other hand, the consensus problem becomes a dis-
tributed optimization problem when the consensus value is re-
quired to minimize the sum of individual convex functions. Many
works are based on subgradient method. Nedić and Ozdaglar
(2009) obtained an approximate optimal solution with a common
constant step size about the local subgradient. A projected subgra-
dient method was proposed in Nedic, Ozdaglar, and Parrilo (2010)
to deal with a set constraint, where the subgradient step is firstly
taken on the local average for an intermediate estimate, and then
the estimate is projected onto the common constraint for an up-
date of the state. It was later extended to the dual problem with
inequality and equality constraints in Yuan, Xu, and Zhao (2011)
and Zhu and Martinez (2012). Note that all the above works are in
discrete-time.

As for continuous-time case, fewer results have been obtained.
Conditions to guarantee the convergence of distributed uncon-
strained convex optimization for strongly connected graphs were
examined in Shi, Proutiere, and Johansson (2012). By including a
quadratic penalty in the Lagrangian problem,Wang and Elia (2010,
2011) applied saddle-point dynamics to reach the unconstrained
minimizer of the sum of differential cost functions under a fixed
undirected topology, which was extended later to the case of non-
smooth convex functions (Gharesifard & Cortes, 2014). Compared
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with the discrete-time case, a continuous-time formulation en-
ables to employ more techniques and arguably provide more in-
sight due to its independence of particular realization. Still, there is
much to be explored in applying distributed optimizing algorithms
to continuous-time systems.

In this paper, we study a consensus problem considering
both constraint and optimization: the distributed constrained
optimal consensus for continuous-time multi-agent systems with
a common convex set constraint. A motivational example comes
from the constrained rendezvous of unmanned aerial vehicles
(UAVs) within a prescribed safety area, when the choice of
the rendezvous location depends on minimizing the aggregate
distance from the starting points to the final location. Each node
is assumed to be a continuous integrator system, and assigned
with a local coercive convex cost function. A distributed control
input for each agent is to be designed to attain a consensus value
minimizing the sum of local functions over the constraint set. To
this end, three terms are incorporated into the control input: a
local averaging term to guarantee the asymptotic consensus, a
projection term to make the state values approach the constraint
set, and a subgradient term with a diminishing but persistent gain
to drive the consensus state to the constrained minimum. Due to
the non-uniqueness of subgradient, the algorithm is modeled as a
differential inclusion, and the solving of the constrained optimal
consensus problem relies on analyzing the limit set of its solution
with non-smooth techniques.

The contributions of this paper are as follows. Compared
with the discrete-time work (Nedic et al., 2010), we modify the
projection term such that the state is to approach the constraint
set rather than to be directly projected onto it. We also relax the
condition about the diminishing scaling on subgradient without
the extra requirement of being square-integrable. Besides, the
bounded subgradient assumption can be completely removed
under the mild assumption of coercive cost functions. And when
compared with other continuous-time works (Shi et al., 2012), we
are able to deal with more general non-smooth cost functions.

The rest of the paper is organized as follows. Somepreliminaries
are recalled in Section 2. The problem formulation is stated
in Section 3, with the main result presented. The complete
convergence analysis is conducted in Section 4. Numerical
examples and concluding remarks are respectively provided in
Sections 5 and 6.

Some notations and abbreviations are used throughout this
paper. R and R≥0 respectively denote the real and nonnegative
real numbers. 1n is an n dimensional vector of ones and J =

1
n1n1′

n.
⟨x, y⟩ and |x−y| are standard inner product and the corresponding
distance respectively for x, y ∈ Rn. [M]i,j denotes the (i, j)-th entry
of M ∈ Rm×n and M ′ its transpose, while ∥M∥ = sup|x|≠0 |Mx|/|x|
for a square matrix M . X ⊗ Y is the Kronecker product of X and Y .
⌈a⌉ is the smallest integer not less than a.


i denotes a summation

for all possible index i, which similarly applies to maxi. The terms
‘‘upper semi-continuous’’, ‘‘absolutely continuous’’ and ‘‘almost
everywhere’’ are abbreviated as u.s.c., a.c. and a.e., respectively.

2. Preliminaries

Some preliminaries, as well as main lemmas used in the
analysis, are reviewed in this section.

2.1. Preliminaries of graph theory

Amulti-agent system can bemodeled as an undirected graphG,
which consists of a node set V = {1, . . . , n} and an edge set of un-
ordered pairs E = {(i, j) : i, j ∈ V} excluding self-loop (i, i). (i, j) ∈

E indicates a mutual communication between node i and node j.
Ni = {j | j ∈ V, (j, i) ∈ E} is the neighbor set of node i. A path from

node l0 to node ld is defined by (l0, l1), . . . , (ld−1, ld) ∈ E(G), where
l0, . . . , ld are distinct nodes. G is connected if a path exists for any
pair of different nodes. Moreover, a symmetric matrix A ∈ Rn×n

≥0
is used to represent the weights on the edges, and [A]i,j > 0 iff
(j, i) ∈ E . The triplet {V, E, A} completely describes the weighted
graph G. Conversely, given a symmetric matrix P ∈ Rn×n

≥0 , an undi-
rected graph G(P) can be associated by letting V = {1, . . . , n},
E = {(i, j) : [P]i,j > 0, i ≠ j} and weight matrix Pd with [Pd]i,j =

[P]i,j, i ≠ j;
0, i = j. For a graphG, the Laplacianmatrix L = DG−A is useful

to algebraically examine the connectivity, where DG is a diagonal

matrix with the ith diagonal entry as Di
∆
=


j∈Ni

aij. If G is undi-
rected, L has the Jordan decomposition L = TLdiag{λ1, . . . , λn}T ′

L
with the unitarymatrix TL = [

1n√
n φ2 . . . φn], where 0 = λ1 ≤ λ2 ≤

· · · ≤ λn and G is connected iff λ2 > 0 (Godsil & Royle, 2001).
We use the switching signal σ : [t0, +∞) → Q to define

the time-varying communication, with the set Q comprising of
all the possible undirected weighted graphs assuming an identical
node set V . The union graph Gσ [t1, t2) over the time interval
[t1, t2) is jointly connected, if {V,


t∈[t1,t2)

E(σ (t))} is connected.
The same notation also applies to the discrete-time case, where
[t1, t2) stands for a sequence of consecutive time instants {t1, t1 +

1, . . . , t2 − 1}. If there exists a constant T > 0 such that Gσ [t, t +

T ) is jointly connected for any t , Gσ is called uniformly jointly
connected, where the subscript σ may be not specified.

2.2. Convex sets and convex functions

Given x ∈ Rm and C ⊆ Rm, |x|C = infc∈C |x − c| is the distance
from x to C . For a closed convex set C ∈ Rm, PC(x) ∈ C is the
projection of x onto C, uniquely satisfying |x − PC(x)| = |x|C , and
we have

⟨PC(x) − x, PC(x) − y⟩ ≤ 0, ∀y ∈ C. (1)

The following lemma estimates the inner product involving the
projection vector, which may be seen as the counterpart of
Cauchy–Schwarz inequality in the convex context. It can also be
found in Shi and Hong (2009, Lemma 13), and here we provide a
more concise and intuitive proof.

Lemma 1. Given C ⊂ Rm closed and convex, we have

⟨x − PC(x), y − x⟩ ≤ |x|C(|y|C − |x|C), ∀x, y. (2)

Proof. We only need to discuss the case of |x|C ≠ 0. Define r =
1

|x|C
(x− PC(x)) and H = {z : ⟨r, z − PC(x)⟩ = 0} as the hyperplane

supporting C at PC(x). Clearly C ⊂ H−
= {z : ⟨r, z − PC(x)⟩ ≤ 0}.

Now let yH = ⟨r, y − PC(x)⟩. Noticing that ⟨r, y − x⟩ = ⟨r, y −

PC(x)+PC(x)−x⟩ = yH −xH and xH = |x|C , the proof is completed
by observing that yH = d(y,H) ≤ |y|C when yH ≥ 0. �

The subdifferential of a convex function f at x is the set

∂ f (x) = {s : f (y) ≥ f (x) + ⟨s, y − x⟩, ∀y},

with the element s ∈ ∂ f (x) called a subgradient of f at x. ∂ f (x) is a
nonempty compact convex set for each x and the set-valued map
∂ f is u.s.c. everywhere. The subdifferential ofϕ(t) = f (x+t(y−x))
can be found in the lemma below, reminiscent of the directional
derivative for a differentiable f :

Lemma 2 (Hiriart-Urruty & Lemaréchal, 2001). ∂ϕ(t) = {⟨s, y −

x⟩ : s ∈ ∂ f (xt)}; or symbolically ∂ϕ(t) = ⟨∂ f (xt), y − x⟩.
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