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a b s t r a c t

In this paper, some new criteria for detecting whether a finite game is potential are proposed by solving
potential equations. The verification equations with the minimal number for checking a potential game
are obtained for the first time. Comparedwith the existing results, a reduced-complexity testing condition
is derived. Some connections between the potential equations and the existing characterizations of
potential games are established. It is revealed that a finite game is potential if and only if its every bi-
matrix sub-game is potential.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Game theory, the science of strategic decision making pio-
neered by John von Neumann (see von Neumann & Morgenstern,
1953), has wide real-world applications in many fields, including
economics, biology, computer science and engineering. The Nash
equilibrium, named after John Forbes Nash, Jr., is a fundamental
concept in game theory, which represents stable states of com-
plex systems such as economic systems, transportation networks
and wireless communication networks. The existence and com-
puting of Nash equilibria are two central issues in the theory of
games. For two-player zero-sum games, von Neumann proved the
existence of mixed-strategy equilibria using Brouwer Fixed Point
Theorem. Nash proved that if mixed strategies are allowed, then
every game with a finite number of players and strategies has at
least one Nash equilibrium (Nash, 1951). Although pure strategies
are conceptually simpler than mixed strategies, it is usually dif-
ficult to guarantee the existence of a pure-strategy Nash equilib-
rium (PNE). However, it is shown that every finite potential game
possesses a PNE (Monderer & Shapley, 1996). The idea of poten-
tial functions was firstly proposed by Rosenthal (1973). A game is
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said to be a potential game if it admits a potential function. The
incentive of all players to change their strategy can be expressed
by the difference in values of the potential function. For a poten-
tial game, a PNE can be found by searching the maximal values of
the potential function. PNEs are very important for many practi-
cal complex control systems such as multi-agent systems (Mar-
den, Arslan, & Shamma, 2009) and wireless networks (Candogan,
Menache, Ozdaglar, & Parrilo, 2010; Moragrega, Closas, & Ibars,
2015) since in practice the desirable operating point is just a PNE.
Moreover, it is very efficient to design a complex control system
as a potential game to guarantee the existence of PNEs and the
corresponding potential function is usually utilized to design a dis-
tributed control algorithm to ensure the convergence to the desir-
able operating point.

An important problem is how to check whether a game is
a potential game. Monderer and Shapley (1996) first proposed
necessary and sufficient conditions for potential games. But it is
required to verify all the simple closed paths with length 4 for
any pair of players. Then Hino (2011) gave an improved condition
for detecting potential games, which has a lower complexity than
that of Monderer and Shapley (1996) due to that only the adjacent
pairs of strategies of two players are needed to check. In Ui
(2000), it is proved that a game is potential if and only if the
payoff functions coincide with the Shapley value of a particular
class of cooperative games indexed by the set of strategy profiles.
Game decomposition is an important method for potential games
(Candogan, Menache, Ozdaglar, & Parrilo, 2011; Hwang & Rey-
Bellet, 2011; Sandholm, 2010) and some new necessary and
sufficient conditions for detecting potential games are obtained.
Sandholm (2010) established connections between his results and
that in Ui (2000). But the number of the obtained verification
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equations is not theminimum, which is just an important problem
to solve in this paper. In Sandholm (2010), it is proved that a finite
game is a potential game if and only if, in each of the component
games, all active players have identical payoff functions, and that
in this case, the potential function can be constructed.

Recently, Cheng (2014) developed a novel method, based on
the left semi-tensor product of matrices, to deal with games
including potential games, networked games and evolutionary
games (Cheng, 2014; Cheng, He, Qi, & Xu, 2015; Cheng, Xu, He, &
Qi, 2014; Cheng, Xu, & Qi, 2014; Guo, Wang, & Li, 2013). In Cheng
(2014), a linear system, called potential equation, is proposed, and
then it is proved that a finite game is potential if and only if its
potential equation is solvable. With a solution of the potential
equation, the potential function can be directly calculated.

A natural question is how to establish the connection between
the potential equation and some other existing criteria of potential
games. Moreover, two more interesting problems are how to get
the verification condition with minimum number of equations
and how to reduce the computation complexity. In this paper,
we further investigate the solvability of the potential equation.
An equivalence transformation is constructed to convert the
augmented matrix of the potential equation into the reduced
row echelon form. Based on this technique, some new necessary
and sufficient conditions for potential games are obtained. For
potential games, a new formula to calculate the potential functions
is proposed. Based on the obtained results, it is revealed the
connection between the potential equation and the results in Hino
(2011) and Sandholm (2010). Compared with existing references,
this paper is in a more general frame without assuming that
all the players have the same number of strategies. A testing
condition withminimum number of equations for potential games
is achieved and the computation complexity is essentially reduced.

Throughout the paper, we denote the k×k identitymatrix by Ik,
the ith column of Ik by δi

k, the n-dimensional column vector whose
entries are all equal to 1 by 1k, Kronecker product by ⊗ and the
real number field by R. For statement ease, we need some other
notations as follows:

Bk := [Ik−1, − 1k−1], Dk := [Ik−1, 0] ∈ R(k−1)×k, (1)

Hk = Ik −
1
k
1k1T

k, k[p,q]
:=


q

j=p

kj, q ≥ p,

1, q < p.
(2)

2. Preliminaries

Definition 1 (Monderer & Shapley, 1996). A finite game is a triple
G = (N , S, C), where

(i) N = {1, 2, . . . , n} is the set of players;
(ii) S = S1 × S2 × · · · × Sn is the strategy set, where each

Si = {si1, s
i
2, . . . , s

i
ki
} is the strategy set of player i;

(iii) C = {c1, c2, . . . , cn} is the set of payoff functions, where every
ci : S → R is the payoff function of player i.

Let cµ

i1i2···in
= cµ(s1i1 , s

2
i2
, . . . , snin) where 1 ≤ is ≤ ks and s =

1, 2, . . . , n. Then the finite game can be described by the arrays

Cµ = {cµ

i1 i2...in
|1 ≤ is ≤ ks, s = 1, 2, . . . , n} (3)

with µ = 1, 2, . . . , n. Particularly, for a 2-player game, the k1 × k2
matrices C1 = (c1ij ) and C2 = (c2ij ) are the payoffmatrices of players
1 and 2 respectively. Therefore, a 2-player finite game is also called
a bi-matrix game, which is usually denoted by G = (C1, C2).

Definition 2 (Monderer & Shapley, 1996). A finite game G =

(N , S, C) is said to be potential if there exists a function p : S →

R, called the potential function, such that ci(x, s−i) − ci(y, s−i) =

p(x, s−i) − p(y, s−i) for all x, y ∈ Si, s−i
∈ S−i and i = 1, 2, . . . , n,

where S−i
= S1 × · · · × Si−1 × Si+1 × · · · × Sn.

Definition 3 (Cheng, Qi, & Li, 2011). Assume A ∈ Rm×n, B ∈ Rp×q.
Let α = lcm(n, p) be the least commonmultiple of n and p. The left
semi-tensor product of A and B is defined as A n B = (A⊗ I α

n
)(B⊗

I α
p
).

Since the left semi-tensor product is a generalization of the
traditional matrix product, the left semi-tensor product A n B can
be directly written as AB. If the number of A’s columns is equal to
that of B’s rows, then the left semi-tensor product AB is just the
traditional product. Identifying each strategy sij with the logical
vector δ

j
ki
for i = 1, 2, . . . , n and j = 1, 2, . . . , ki, Cheng (2014)

gave a new expression of the payoff functions using the left semi-
tensor product.

Lemma 4 (Cheng, 2014). Let xi ∈ Si be any strategy expressed in the
form of logical vectors. Then, for any payoff function ci of a finite game
G shown in Definition 1, there exists a unique row vector V c

i ∈ Rn

such that

ci(x1, x2, . . . , xn) = V c
i x1x2 . . . xn, (4)

where V c
i is called the structure vector of ci.

Remark 5. It is easy to see that V c
i is just the row vector composed

of the elements of Ci in the lexicographic order (see (3)). Let C =

[(V c
1 )

T, (V c
2 )

T, . . . , (V c
n )

T
]
T. Then C is just the payoff matrix of G

given by Cheng (2014).

In Cheng (2014), the potential equation is proposed in the case that
ki = k for all i = 1, 2, . . . , n. In Cheng, Liu, Zhang, and Qi (2015),
the general potential equation is stated as follows:

Ψ ξ = b, (5)

where

Ψ =


−Ψ1 Ψ2
−Ψ1 Ψ3

...
. . .

−Ψ1 Ψn

 , ξ =


ξ1
ξ2
...
ξn

 ,

b =


(V c

2 − V c
1 )

T

(V c
3 − V c

1 )
T

...

(V c
n − V c

1 )
T


and Ψi = Ik[1,i−1] ⊗ 1ki ⊗ Ik[i+1,n] for every i = 1, 2, . . . , n.

Lemma 6 (Cheng, 2014; Cheng, Liu et al., 2015). A finite game G
shown in Definition 1 is a potential game if and only if the potential
equation (5) has a solution ξ . Moreover, as (5) holds, the potential
function p can be calculated by

(V p)T = (V c
1 )

T
− (1k1 ⊗ Ik[2,n])ξ1. (6)

3. Bi-matrix games

In this section, we consider the 2-player finite game G =

(C1, C2), where Ci ∈ Rk1×k2 for i = 1, 2. In this special case, the
coefficient matrices of the potential equation (5) become

Ψ = [−1k1 ⊗ Ik2 , Ik1 ⊗ 1k2 ], b = (V c
2 − V c

1 )
T. (7)
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