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This paper is concerned with asymptotic stability analysis of linear time-varying (LTV) systems. With
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provided to illustrate the effectiveness of the proposed theoretical results.
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1. Introduction

The stability of dynamics systems is the most important
criterion in system design (Harris & Miles, 1980). Hence stability of
linear time-varying (LTV) systems including linear time-invariant
ones as special cases has received considerable attention during
the past several decades (see Anderson & Moore, 1969, Haken &
Naylor, 1966, Malek-zavarei, 1978, Mazenc, Malisoff, & Niculescu,
2014, Mullhaupt, Buccieri, & Bonvin, 2007, Sun, 2007, Zhou,
Cai, & Duan, 2013 and the references therein). There has been
considerable development of the state space approach to stability
theory of linear time-invariant systems in the past several decades,
while the corresponding status of LTV systems is comparatively
retarded (Harris & Miles, 1980). This is because, as pointed out in
Harris and Miles (1980), state transition matrices of LTV systems,
which are impossible to be derived except for very particular cases
(see, for example, Wu, Horowitz, & Dennison, 1975), are generally
needed to ascertain the properties of stability, while for linear
time-invariant systems such properties can be determined directly
(or indirectly) in terms of the system parameters. Particularly, the
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stability of a linear time-invariant system is totally determined
by the locations of the eigenvalues of the system matrix, while
the stability of an LTV system cannot be linked with the locations
of the eigenvalues of its system matrix (Rugh, 1996; Wu, 1974).
Consequently, it seems that simple yet necessary and sufficient
conditions guaranteeing stability of general LTV systems are not
available, except for the very special case that the system is
periodic (Zhou & Duan, 2012; Zhou, Hou, & Duan, 2013).

On the other hand, in contrast to linear time-invariant
systems which only have two kinds of stability concepts, namely,
(Lyapunov) stability and asymptotic stability, there are several
different stability concepts for LTV systems by distinguishing
uniform stability from non-uniform stability which are related
with the initial time of the system, making the stability analysis of
LTV systems much more complicated than the time-invariant ones
(see Kalman & Bertram, 1960 for a comprehensive introduction
of different stability concepts for dynamics systems and the
relationship among them). In the literature there are a few
Lyapunov stability theorems for testing uniformly asymptotic
stability (namely, uniformly exponential stability) (see Anderson
& Moore, 1969, Kalman & Bertram, 1960, Ramarajan, 1986, Rugh,
1996 and the references therein) while few results are available for
testing non-uniformly asymptotic stability.

In consideration of the complexity of stability analysis of
LTV systems, considerable research effort has been taken to find
less conservative sufficient conditions. One type of the efficient
methods among them relies on the use of Lyapunov function by
approximating the LTV systems by time-invariant ones (Ilchmann,
Owens, & Pratzel-Wolters, 1987; Mullhaupt et al., 2007). Another
type of methods adopts the ideas found in robust control theory by
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modeling the time-varying elements as uncertainties imposed on
the linear time-invariant plants so that the theory built for linear
time-invariant systems can be adopted (see, for example, Cao &
Lam, 2000, Petersen, 1985, Petersen, 1988 and Xu, Lam, & Zou,
2009). Besides, the Bellman-Gronwall inequality approach (which
is also known as perturbation analysis) is also proven to be very
effective in deriving non-conservative conditions for guaranteeing
asymptotic stability for LTV systems (Bellman, 1953; Solo, 1994).

The asymptotic stability test of LTV system has been listed
as the FIRST open problem in mathematical systems and control
theory (see Aeyels & Peuteman, 1999). It is mentioned in Aeyels
and Peuteman (1999) that this problem is non-trivial and some
specific versions of this problem were even examined with the
framework of complexity theory (Aeyels & Peuteman, 1999). It
is further commented in Aeyels and Peuteman (1999) that: “The
study of the stability of a system x(t) = A(t)x(t) with a system
matrix A(t) which is neither fast time-varying nor slowly time-
varying is an ambitious task”. Hence, by considering that the
stability test of LTV systems is extremely difficult and has not
yet been fully developed, there is still a need to make an effort
on this issue. In this paper motivated by Rugh (1996), Huang,
Hollot, and Xu (1991) and the comparison principle Khalil (2002),
we make some new observations on the stability analysis of
LTV systems. With the help of the notion of stable functions, a
series of differential Lyapunov inequality (DLI) based necessary
and sufficient conditions is derived to test asymptotic stability,
(non-uniformly) exponential stability and uniformly exponential
stability. The main feature of these criteria is that they share the
same DLI and do not require the right hand side of the DLI be
negative all the time. The (non-uniformly) exponential stability
concept is then utilized to study the asymptotic stability of a class
of triangular LTV systems. A couple of examples with some of them
borrowed from the literature is carried out to demonstrate the
effectiveness of the obtained results.

The remainder of this paper is organized as follows. In Section 2,
we recall the different stability concepts and the corresponding
criteria based on the state transition matrix. The main results
are provided in Section 3 in which the concept of state functions
is introduced and studied in Section 3.1, DLIs based criteria are
introduced in Section 3.2 and stability of a class of upper-triangular
LTV systems is investigated in Section 3.3. Some examples are
provided in Section 4 to illustrate the obtained results. Finally,
Section 5 concludes this paper.

2. Stability concepts of LTV systems

Throughout this paper, if not specified, we let ] = [t*, co) with
t* being some finite number. We use C' (J, £2) and PC (J, £2) to
denote respectively the space of £2-valued continuously differen-
tiable functions and piecewise continuous functions defined on J.
The acronym WGDR refers to “with guaranteed decay rate” and |-|
refers to the usual Euclidean norm. Consider the following linear
time-varying (LTV) system

x(t) = A(t)x(), te], (1)

where A(t) € PC (J R"X"). Denote the state transition matrix for
this system as @ (t, ty), Vt, tp € ], t > to.

Definition 1. The LTV system (1) is said to be

(1) stable if for any ¢ > 0 and for any ty; € J, there exists a
8 = &(tg,e) > 0 such that [x(tp)|] € [0,8] = |x(t)| €
[0, 8], Vf, to E],f > to;

(2) uniformly stable if § in Item 1 is independent of to;

(3) asymptotically stable (AS) if it is stable and, for any t, € J and
any ¢ > 0, there exist two positive scalars n = 7(ty) and
T =T (to, €) such that |x(to)| € [0, n] = |x(t)| € [0, ], Vt >
T + to;

(4) uniformly asymptotically stable (UAS) if it is uniformly stable
and 5 and T in Item 3 are independent of ty;

(5) exponentially stable (ES) [WGDR « with« > 0] if, for any given
to € J, there exist two scalars k(ty) > 0 such that

IX(©)] < k(to) Ix(t) €™, Vi, €], t > to; (2)

(6) uniformly exponentially stable (UES) [WGDR «] if k(to) in the
above item is independent of tg.

Definition 1 except for Item 5 is recalled from Harris and Miles
(1980). It is well-known that the stability of an LTV system is
completely characterized by its state transition matrix, as recalled
in the following lemma.

Lemma 1. The LTV system (1) is

(1) stable if and only if, for any ty € ], there exists a k(ty) > O such
that (Theorem 5.1 in Harris & Miles, 1980)

|P(t, to)| < k(to), Vt,to €], t = to; (3)

(2) uniformly stable if and only if k(to) in (3) is independent of ty
(Theorem 6.4 in Rugh, 1996);

(3) ASifand onlyif (3)is satisfied and (Theorem 5.2 in Harris & Miles,
1980)

lim |@(t, tp)| = O; (4)
t—0o0

(4) ES [WGDR «] if and only if, for any ty € ], there exists a scalar
k(to) > 0 such that

| (¢, to)| < k(to)e ™0 Ve, tg e, t >ty (5)

(5) UES [WGDR «] if and only if k(tp) in (5) is independent of ty
(Theorem 6.7 in Rugh, 1996);
(6) UAS if and only if it is UES (Theorem 6.13 in Rugh, 1996).

Since the notion of the ES (2) is not well recognized in the
literature (we noticed that a slightly different definition of ES was
givenin Anderson, [lchmann, and Wirth (2013)), Item 4 of Lemma 1
seems not available in the literature; yet its proof is simple and can
be carried out by combining the proofs for Items 2 and 5 (see Rugh,
1996).

Remark 1. It follows from Items 5-6 of Lemma 1 that the LTV sys-
tem (1)isUESonlyif |® (to + T, to)|, to € Jand |® (tyd, to)|, to >
0 are uniformly (with respect to tp) bounded for any given T > 0
and § > 1, namely, if there existsaT > Oorad > 1 such that
limy,— o0 [@ (to + T, tg)| = 00 or limgy_ o0 |P (o4, to)| = 00, then
the LTV system (1) is not UES.

It follows from Lemma 1 that “UAS” < “UES” = “ES” —
“AS” = “Stable” and “UAS” = “Uniformly Stable” = “Stable”.
We provide some examples to demonstrate that the converse of
the above relationships is not true. The first system is AS but is not
ES.

Example 1. Consider the following scalar LTV system (see p. 105
in Rugh, 1996)

x(t) = A(t)x(t), A(lt)=———, Vt €] =0, 00).
) = A@O)x(), A(t) T J =10, 00)
This system is not UES since (see p. 105 in Rugh, 1996)
1+
D(t, tg) = ——. 6
(t 1) = 3 (6)

By a similar approach as in Rugh (1996) we can show that it is also
not ES.

The next system is ES but is not UES.
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