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a b s t r a c t

Most existing methods for finite-time stabilizing controller design of linear time-varying systems
involve solving differential linear matrix equations. Due to the non-convexity of the problem, it
requires a high computational burden. This paper proposes a numerical method to solve finite-time
stabilization problems. Successive approximations are performed to estimate the evolution of system
states. Accordingly, a gain-switched state feedback controller can be obtained by solving a sequence of
linear matrix inequalities (LMIs) based optimization problems. The proposed algorithm is used to design
the mass–spring system and the autopilot system of the BTT missile. Comparison with existing methods
is given and the simulation results show the effectiveness of the proposed method.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Finite-time stability (FTS) is a practical concept which is used
to study the behavior of a system within a finite time interval. A
system is said to be finite-time stable if, given a bound on the ini-
tial condition, its state does not exceed a certain threshold during a
certain time interval. Typically, the feature of FTS does not guaran-
tee stability in the sense of Lyapunov, and vice versa, however FTS
is a very useful concept in many cases. For many dynamic systems
the state trajectories are required to stay within a desirable opera-
tive range over a certain time interval to prevent saturation, to ful-
fill hardware constraints or tomaintain linearity of the system. The
concept of FTSwas introduced in the control literature in the sixties
of the last century (Dorato, 1961; Weiss & Infante, 1967) and has
received much attention in the last fifteen years. Related stability
criterion and stabilizationmethods have been studied for both lin-
ear systems (Amato, Ariola, &Cosentino, 2011;Garcia, Tarbouriech,
& Bernussou, 2009; Shen, 2008) and nonlinear systems (Mastel-
lone, Dorato, & Abdallah, 2004; Yang, Li, & Chen, 2009).
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We focus our attention on linear time-varying systems in this
paper, which have been studied in some references. It is well
known that analysis and design of linear time-varying systems are
challenging since their stability cannot be determined simply by its
coefficients (for example, its eigenvalues) except for the particular
case that the coefficients are periodic (see Bittanti & Colaneri, 2008;
Zhou & Duan, 2012 and the references therein) or some switched
systems (see Lin & Antsaklis, 2009; Sun & Ge, 2005 and the refer-
ences therein). Hence there have been a lot of papers in the lit-
erature that considered linear time-varying systems in different
aspects (see, for example, Kalman & Bertram, 1960; Mazenc, Mal-
isoff, & Niculescu, 2014; Xu, Lam, & Zou, 2009; Zhou, Cai, & Duan,
2013 and the references cited there). In Zhou (in press) necessary
and sufficient conditions in terms of differential Lyapunov inequal-
ities were established for asymptotic stability, (non-uniformly)
exponential stability and uniformly exponential stability of lin-
ear time-varying systems. In Abdallah, Amato, Ariola, Dorato, and
Koltchinsky (2002) linear time-varying systems are considered as
time-invariant systems with time-varying parametric uncertain-
ties, accordingly, a constant-gain state feedback stabilizing con-
troller can be obtained by solving a feasibility problem in terms
of linear matrix inequalities (LMIs). In Amato, Ariola, Carbone, and
Cosentino (2006) sufficient conditions for finite-time stabilization
of linear time-varying systems have been provided in terms of a
differential linear matrix inequality (DLMI), and in Amato, Ariola,
and Cosentino (2010) and Amato, Ambrosino, Ariola, Cosentino,
and Tommasi (2014) the results have been shown to be necessary
and sufficient. These results have been extended also to the im-
pulsive linear systems (Amato, Tommasi, & Pironti, 2013). How-
ever, due to the fact that we do not have a numerical technique
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to find the optimal solution over the set of all admissible matrix-
valued functions, one need to restrict the structure of the DLMI so-
lution to make the problem computationally tractable. In Amato,
Ambrosino, Ariola, and Cosentino (2009); Amato et al. (2006) the
DLMI condition has been recast in terms of LMIs by dividing the fi-
nite time interval in subintervals and assuming the solutions piece-
wise affine. In order to reduce the possible design conservatism,
the subinterval should be sufficiently small, which causes great
computational burden.

This paper provides another numerical approach to solve the
finite-time stabilization problem for linear time-varying systems,
which does not involve differential matrix equations and is thus
less demanding from the computational point of view. Succes-
sive approximations of states are used to derive new sufficient
FTS conditions and a design algorithm is proposed consequently
to recast the design problem as LMIs based convex feasibility or
optimization problems which can be solved by some existing ap-
proaches (for example, Boyd and Vandenberghe (2004) and Teo
and Clements (1985)). Two design examples are given and the sim-
ulation results validate the effectiveness of the proposed approach.

The remainder of this paper is organized as follows. The prob-
lem formulation and some preliminaries are given in Section 2.
Our main results are included in Section 3. In Section 4, two de-
sign examples are given. The proposed approach is applied on the
mass–spring system and the BTT missile control system and simu-
lations are carried out there. Finally, Section 5 concludes this paper.

Notation: Throughout the paper, the notation used is fairly
standard. We use AT to denote the transpose of matrix A. For
a symmetric matrix P , we use λmin (P) and λmax (P) to denote
respectively its minimal and maximal eigenvalues. The symbol
diag{A1, A2, . . . , Ap} stands for a block-diagonal matrix whose
diagonal elements areA1, A2, . . . , Ap. In denotes the identitymatrix
with n dimensions. Finally, for a real symmetric matrix P , the
notation P > (≥) 0 is used to denote its positive (semi-positive)
definiteness and the notation P

1
2 is used to denote the unique

symmetric matrix X > (≥) 0 satisfying X2
= P .

2. Preliminaries and problem statement

We firstly recall the definition of finite-time stability (FTS) of
linear time-varying systems as stated in Amato et al. (2014).

Definition 1. Given an initial time t0, a positive scalar T , a positive
definite matrix R ∈ Rn×n, and a positive definite matrix-valued
function Γ (t) : [t0, t0 + T ] → Rn×n such that

Γ (t0) < R, (1)

the linear time-varying system

ẋ(t) = A(t)x(t), x(t0) = x0, (2)

where A(t) ∈ Rn×n, is said to be finite-time stable with respect to
(t0, T , R, Γ (·)) if

xT0Rx0 ≤ 1 H⇒ xT(t)Γ (t)x(t) < 1, ∀t ∈ [t0, t0 + T ]. (3)

Remark 2. In practice, the matrix R can be determined according
to the size of the initial conditions. Actually, for any bounded set
Ω ⊂ Rn, there exists a R > 0 such that

xT0Rx0 ≤ 1, ∀x0 ∈ Ω. (4)

For example, ifΩ = cov{xi : i = 1, 2, . . . , l}, where cov{·} denotes
convex hull of a set of vectors, then (4) holds true if and only if
xTi Rxi ≤ 1, i = 1, 2, . . . , l, which are equivalent to a set of LMIs
−1 xTi R
Rxi −R


< 0, i = 1, 2, . . . , l,

by solvingwhich R can be obtained. However, in some applications
R can be determined easily according to the requirement of
physical systems, as illustrated in the BTT design example to be
given in Section 4.2.

In this paper, we consider the finite-time stabilization problem
of linear time-varying systems. All the involved time-varying
matrices, unless otherwise stated, are assumed to be bounded. The
problem can be stated as follows.

Problem 3. Consider the linear time-varying system

ẋ(t) = A(t)x(t) + B(t)u(t), x(t0) = x0, (5)

where A(t) ∈ Rn×n and B(t) ∈ Rn×m are matrix-valued functions,
and u(t) ∈ Rm is the control input. Then, given an initial time
t0, a positive scalar T , a positive definite matrix R ∈ Rn×n, and a
positive definitematrix-valued functionΓ (t) : [t0, t0+T ] → Rn×n

satisfyingΓ (t0) < R, determine a time-varying gainK(t) : [t0, t0+
T ] → Rm×n such that, with the state feedback controller

u(t) = K(t)x(t), (6)

the closed-loop system

ẋ(t) = (A(t) + B(t)K(t))x(t), x(t0) = x0, (7)

is finite-time stable with respect to (t0, T , R, Γ (·)).

3. Main results

In this section, we firstly establish sufficient criteria for FTS of
the linear time-varying system (2). Based on this sufficient criteria
we will then derive a condition for the existence of a solution
to Problem 3 and the corresponding algorithm for the controller
design will also be proposed.

Theorem 4. Given an initial time t0, a positive scalar T , a positive
definite matrix R ∈ Rn×n, and a positive definite matrix-valued
function Γ (t) : [t0, t0 + T ] → Rn×n such that Γ (t0) < R, then
system (2) is finite-time stable with respect to (t0, T , R, Γ (·)) if there
exists a discrete time sequence
ti

ti+1 = ti + δi, δi > 0,
i = 0, 1, . . . , r, tr+1 = (t0 + T )+


(8)

and a piecewise constant matrix-valued function P(t) : [t0, tr+1) →

Rn×n in the form of

P(t) = Pi, ∀t ∈ [ti, ti+1), i = 0, 1, . . . , r, (9)

such that the following conditions hold:

Condition 1. For all t ∈ [t0, t0 + T ],
P(t) ≥ Γ (t), ∀t ∈ [t0, t0 + T ],
P0 < R. (10)

Condition 2. For i = 0, 1, . . . , r, σ

ti
α(τ)dτ ≤ 0, ∀σ ∈ [ti, ti+1), (11)

where α(s) is defined by

α(s) = λmax


P−

1
2 (s)AT(s)P

1
2 (s) + P

1
2 (s)A(s)P−

1
2 (s)


. (12)

Condition 3. For i = 1, 2, . . . , r, ti

t0
α(τ)dτ +

i
k=1

ln

λmax


PkP−1

k−1


≤ 0. (13)
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