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An adaptive multi-step local linear prediction method is derived for nonlinear time series by partially
updating the predictor with an implicit vector inner product involved in every prediction. The predictor
mainly consists of two parts, the basic vector which is calculated at one step based on the nearest
neighbors of the current state point, and the updating vector which ensures the validity of the
multi-step prediction. Analyses on the precision and computational complexity are made with close
comparisons with other prediction methods based on the local linear model. Straightforward performance
comparisons made with the classical Lorenz series show that while preserving an admirable precision,
the proposed method reduces the computational complexity, thus rendering it more applicable of real
time signal processing than the others based on the local linear model. Experiments on voiced sounds
are also made and the results demonstrate that, as compared with the traditional linear prediction (LP)
method, a remarkable performance gain in precision is achieved with the proposed method, while the
computations it costs are similar to that consumed by the LP method.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Nonlinear time series occur in many fields of science and en-
gineering and a lot of nonlinear prediction methods have been
proposed. The methods based on the intrinsic nonlinear models,
including the neural network models and support vector machine
ones, such as the radial basis function (RBF) neural network [1], fi-
nite impulse response (FIR) neural network [2] and support vector
regression (SVR) [3,4], have been extensively studied. As expected,
these methods can give better performance in terms of prediction
precision, but the intensive computation in solving the relevant op-
timization problems in these methods makes them unrealistic in
practical realtime application. Another kind of the nonlinear pre-
diction model often used is that based on the Volterra series [5,6].
A second order Volterra series based method can improve the re-
constructed speech quality up to 2 dB overall [6]. Nevertheless, this
method consumes more computational resources, even if the fast
recursive algorithm is exploited [7,8].

On the other hand, approaches based on the theory of nonlinear
dynamics were also attempted for some kinds of nonlinear time
series. Among them are those that are based on the locally lin-
ear prediction (LLP) model which is first proposed by Farmer and
Sidorowich [9] for predicting chaotic time series, and further de-
veloped by many others [10,11]. They were regarded as being most

✩ This work is supported by the National Science Foundation of China under Grant
Nos. 10574070 and 10874085. It is also supported by the Natural Science Fund for
Colleges and Universities in Jiangsu Province under Grant No. 08KJD510002.

E-mail address: if@sohu.com.

promising because of the relative simplicity in implementation as
compared to the above-mentioned nonlinear methods [12,13]. But
so far their application to realtime processing was still impeded
largely by the prohibitive computational complexity of construct-
ing the predictor [14].

To overcome this problem, an iterative LLP (iLLP) was suggested
in [10]. In fact, it introduces nothing new but simply predicts a
frame of time series iteratively with the same one-step predictor
determined by the LLP analysis at the first step of the frame, so
as to save the computational cost for multi-step prediction. In this
way, the prediction error will grow rapidly as the prediction step
advances [1,10], especially when its Lyapunov exponent is large.
Thus the maximum predictable term is limited.

As a compromise between the LLP and iLLP, another modified
LLP was proposed in [14] to reduce the computation by period-
ically updating the predictor every more than one step, but its
performance is still limited in balancing the computational com-
plexity and the accuracy of prediction.

In this paper, the mathematics involved in the kernel algorithm
for multi-step prediction based on the local linear model is opti-
mized, and a method is derived by partially updating the predictor
with an implicit vector inner product involved in every predic-
tion. The predictor consists of the basic vector and the updating
vector which ensures the validity of the multi-step prediction. It
is estimated at one step based on a group of nearest neighbors
of the current state point. And then in the following steps, the
predictor is partially updated while the prediction is made by an
inner product. Thus it adapts to step advances, and this prediction
method is referred to as the partially adapting multi-step Local Linear
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Prediction (paLLP). Our focus is improving the computational effi-
ciency of nonlinear prediction while keeping an acceptable accu-
racy which is similar to that achieved by the one-step LLP method.

The paper is organized as follows. Section 2 formulates the the-
oretical aspects of the proposed method (Section 2.1), and presents
a practical scheme for the paLLP in the form of pseudo code (Sec-
tion 2.2). Analyses as well as some remarks are given on the pre-
diction precision and computational complexity by comparisons
with the relevant nonlinear prediction methods based on the lo-
cal linear model (Sections 3.2, 3.3 and 3.4). The performance of
the paLLP is evaluated by applying it to the typical nonlinear time
series generated by the classic Lorenz system, along with close
comparisons with other LLP-based methods, showing the superior-
ity of the proposed method to the other two LLP-based predictions
in terms of precision and to the LLP in reduction of computation
cost (Section 4.1). After the applicability of the paLLP to speech
processing, especially to a kind of the Analysis-by-Synthesis (A-B-
S) codec, is briefly analyzed (Section 4.2.1), human voiced sounds
are taken as examples to validate the paLLP for practical signals
(Sections 4.2.2 and 4.2.3). Except the comparisons with the other
LLP-based methods, comparisons with the traditional LP are also
made and the results show that maybe the paLLP is a potential
candidate for the speech signal processing. The work is summa-
rized and further discussion is given in the concluding section
(Section 5).

2. Partially adapting multi-step local linear prediction

2.1. Formulation of algorithm

Consider an observed scalar time series xi , i = 0,1,2, . . . , sam-
pled from a continuous signal at an interval τs . By applying Takens’
theorem [15,16], we can reconstruct the dynamics of the time se-
ries in d-dimensional embedding space S with a series of vectors

xi = (xi, xi−m, . . . , xi−(d−1)m)T ,

i = (d − 1)m, (d − 1)m + 1, . . . , (1)

where d is the embedding dimension, m is the delay time in unit
of τs , and the superscript “T ” denotes transpose of a vector or a
matrix.

In the d-dimensional reconstructed phase space, the dynamics
of the system can be described by an iterative function

xn+1 = f(xn) (2)

with f : Rd �→ R
d being a nonlinear vector function. Applying the

iteration k times gives

xn+k = f
(
f
(
. . .

(
f(︸ ︷︷ ︸

k

xn)
))) ≡ fk(xn), (3)

in particular

xn+k = f k(xn) (4)

with f k :Rd �→R also being a nonlinear mapping function.
Thus, the future xn+k could be predicted, provided that f be

known. Unfortunately, the exact form of f is unknown in general
for complex systems, such as human voicing one. However, as long
as xn+k is sufficiently close to the vector xn in the reconstructed
phase space, fk(xn) can be locally linearized via its expansion in
the Taylor series about xn around a point pn,k near to xn [17], and
its approximation can be written as

xn+k = fk(pn,k) + ∂fk

∂xT

∣∣∣∣
x=pn,k

(xn − pn,k) + εn,k

= qn,k + Qn,kxn + εn,k, (5)

where qn,k = fk(pn,k)− ∂fk

∂xT |x=pn,k pn,k ∈ R
d , Qn,k = ∂fk

∂xT |x=pn,k ∈ R
d×d

and εn,k ∈ R
d stands for the higher-order-term (h.o.t.) of (xn −

pn,k). Let Cn,k = (Qn,k,qn,k) ∈ R
d×(d+1) , zn = (xT

n ,1)T ∈ R
d+1, then

we have

xn+k = Cn,kzn + εn,k, (6)

in particular,

xn+k = zT
n cn,k + εn,k, (7)

where cn,k = (cn,k,0, cn,k,1, . . . , cn,k,d)
T ∈R

d+1 is the first column of
CT

n,k , εn,k ∈ R stands for one-dimensional h.o.t. of (xn − pn,k). Thus
the xn+k can be predicted with the vector zn and the estimated
coefficient vector ĉn,k as

x̂n+k = zT
n ĉn,k, (8)

which gives the local linear prediction of xn+k from the so-called
current state vector xn based on the local linear model (7). The pre-
diction error en,k is

en,k = xn+k − x̂n+k = xn+k − zT
n ĉn,k, (9)

which includes the εn,k , the error caused by the estimation error
of ĉn,k and noise in xn+k .

The problem, predicting xn+k , thus is reduced to estimate the
coefficient vector cn,k . To do so, a group of K (K > d + 1) near-
est neighbors of xn are searched from the past state vectors xi ,
(d − 1)m � i < n, and K pairs (xn j , xn j+k) ( j = 0, . . . , K − 1) are
formed, where n j indicates the jth nearest neighbor of the xn . Af-
ter k − 1 steps, the xn j+1, which corresponds to xn j , evolves into
xn j+k . With the K nearest neighbors xn j and the corresponding
xn j+k , we form matrix

Zn = (zn0 , zn1 , . . . , znK−1)
T ∈ R

K×(d+1), (10)

and vector

yn,k = (xn0+k, xn1+k, . . . , xnK−1+k)
T ∈R

K . (11)

The best estimation of cn,k in terms of minimizing square pre-
diction errors therefore becomes an optimization problem

min
cn,k

∥∥Wn(yn,k − Zncn,k)
∥∥

2, (12)

where Wn = diag(w0, w1, . . . , w K−1) ∈ R
K×K is an appropriate

weighting matrix, which is used to indicate the confidence of ev-
ery point pair for the predictor estimation. Generally, the more
xn j close to the xn , the higher the confidence of the point pair
(xn j , xn j+k) is, and the most similar xn j get the most weight. Thus
the weighting factor w j is set to be a function of ‖xn −xn j ‖2, ‖ · ‖2
is L2 norm in S. For example [14],

w j = ‖xn − xn j ‖−1
2 . (13)

The Least-Mean-Square (LMS) solution to (12) turns out to be

ĉn,k = Z†
nWnyn,k, (14)

where

Z†
n = (

ZT
n WT

n WnZn
)−1

ZT
n WT

n (15)

denotes the Moore–Penrose generalized inverse of WnZn .
Substituting (14) into (8), we finally obtain an explicit formula

for optimized local linear prediction

x̂n+k = zT
n ĉn,k = zT

n Z†
nWnyn,k = hnyn,k (16)
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