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This paper addresses the sliding mode control problem for uncertain MIMO linear Markovian jump
systems. Firstly, by using the linear matrix inequality approach, sufficient conditions are proposed to
guarantee the stochastically asymptotical stability of the system on the sliding surfaces. Secondly, an
equivalent control based sliding mode control is proposed, such that the closed-loop system can be driven
onto the desired sliding surfaces in a finite time. Finally, combining with multi-step state transition

probability, the reaching and sliding probabilities are derived for situations where the control force
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may not be strong enough to ensure the fully asymptotical stability. Simulation results are presented
to illustrate the effectiveness of the proposed design method.

© 2016 Published by Elsevier Ltd.

1. Introduction

Nowadays, the modeling of dynamic systems subject to abrupt
changes in their dynamics has been receiving a great deal of at-
tention. These changes can be due to abrupt environmental distur-
bances, to actuator or sensor failure or repairs, to abrupt changes
in the operation point for a nonlinear plant, etc. Such systems
can be found in many fields, e.g. robotic manipulator systems, air-
craft control, space stations, nuclear power plants, and wireless
communication networks. The adequate operation of such devices,
however, is severely compromised by the occurrence of failures,
which may be intolerable in safety-critical applications, for exam-
ple. Continuous Markovian jump system (M]S) is a proper model
to describe these systems. A MJS is a continuous-time dynamical
system with stochastic jumps, in which jumping parameter is a
continuous-time, discrete-state Markov chain taking values in a fi-
nite set. A continuous-time Markov chain (CTMC) is a stochastic
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process that moves from state to state in accordance with a Markov
chain, while its staying time in each state is exponentially dis-
tributed. Many results on M]Ss have been reported in the literature
(Chen, Xu, & Guan, 2003; De Farias, Geromel, Do Val, & Costa, 2000;
Ji & Chizeck, 1990; Karan, Shi, & Kaya, 2006; Mahmoud & Shi, 2003;
Shi, Boukas, & Agarwal, 1999; Wang, Lam, & Liu, 2004; Wu, Shi, &
Gao, 2010; Xiong, Lam, Gao, & Ho, 2005; Xu, Chen, & Lam, 2003; Xu,
Lam, & Mao, 2007; Zhang & Boukas, 2009), including quadratic con-
trol (Ji & Chizeck, 1990), output feedback control (De Farias et al.,
2000), guarantee cost control (Chen et al., 2003), robust stabiliza-
tion of MJS with uncertain switch probability (Xiong et al., 2005)
and partly unknown transition probability (Zhang & Boukas, 2009),
H,, control and filter (Xu et al., 2007), robust Kalman filter (Mah-
moud & Shi, 2003), exponential filter (Wang et al., 2004), state esti-
mation and sliding mode control of singular MJSs (Wu et al., 2010).

In the past decades, sliding mode control (SMC) has become
an important method of nonlinear control, due to its inherent
advantages, e.g. robustness, disturbance resistance, finite-time
convergence. SMC alters the system dynamics by a discontinuous
control signal that forces the system to enter and then slide
along a surface, on which the system has desired properties
such as stability, disturbance resistance. Most recently, significant
progresses have been achieved in SMC for MJSs (Chen, Niu, &
Zou, 2013a,b; Kao, Li, & Wang, 2014; Luan, Shi, & Liu, 2013; Mao,
2002; Niu & Ho, 2010; Niu, Ho, & Wang, 2007; Shi & Boukas,
1997; Shi, Xia, Liu, & Rees, 2006; Utkin & Poznyak, 2013; Wang,
Liu, Yu, & Liu, 2006; Wang, Qiao, & Burnham, 2002; Wu, Shi,
Su, & Chu, 2014, Yin, Shi, Liu, & Teo, 2014; Yu & Kaynak, 2009;
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Zhang, Huang, & Lam, 2003; Zhang, Wang, & Shi, 2013; Zhu, Yu,
& Song, 2014,?). These include adaptive SMC for stochastic MJSs
with actuator degradation (Chen et al., 2013a), SMC for stochastic
M]Ss with incomplete transition rate (Chen et al., 2013b), non-
fragile observer-based H,, SMC for Ito stochastic systems with
Markovian switching (Niu et al, 2007), asynchronous H,/Hso
filtering for discrete-time stochastic MJSs with randomly occurred
sensor nonlinearities (Wu et al., 2014), observer-based H,, control
on nonhomogeneous M]Ss with nonlinear input (Yin et al., 2014),
adaptive SMC with application to super-twist algorithm (Utkin &
Poznyak, 2013), robust Hy, SMC for MJSs subject to intermittent
observations and partially known transition probabilities (Zhang
et al., 2013), and finite-time stabilization for MJSs with Gaussian
transition probabilities (Luan et al., 2013).

Aforementioned works usually assume that the strong control
force is always available to overpower the stochastic uncertainties.
However, in practical applications, controls are usually limited in
power and sometimes insufficient. It would be beneficial to assess
the risk of lowering down control force so that an economic balance
between the risk and control cost can be achieved. In Zhu et al.
(2014), the asymptotical stability probability was first explored for
the second order MJSs under SMC where control force may not
be strong enough to ensure the fully asymptotical stability. In Zhu
et al. (2014), the problem on SMC of single input MJSs was studied.
But it is not straightforward to extend the results for single input
systems to MIMO systems as there may be strong coupling terms.
Thus, the SMC scheme for MIMO M]JSs (including sliding surfaces
and controller design) is significantly different to the one for single
input MJSs. In this paper, we explore the SMC of uncertain MIMO
linear M]Ss. At first, sufficient conditions are proposed in terms
of LMIs to guarantee the asymptotical stability of the system on
the sliding surface. Then, we derive an equivalent control based
SMC paradigm, such that the closed-loop system can be driven
onto the sliding surface in a finite time. Furthermore, the multi-
step stochastic state transition probability function is introduced
to facilitate the discussion. At last, we propose the reaching and
sliding probabilities when no sufficient control is available.

The rest of this paper is organized as follows. In Section 2, the
problem statement and preliminaries are presented. Next, the LMI-
type sufficient conditions of asymptotical stability, the equivalent
control based SMC paradigm, and the reaching probability and the
sliding probability are derived for MIMO linear MJSs in Section 3.
Then, the numerical simulation result is given in Section 4. A
conclusion is drawn in Section 5.

Notations: P(-) denotes the probability of an event. P(A|B)
denotes the conditional probability of event A given event B. || - ||
denotes the Euclidean norm of a vector or the Frobenius norm of a
matrix. M > 0(< 0) denotes that matrix M is a positive(negative)
definite matrix. Bold 0 denotes a zero vector with compatible
dimensions.

2. Problem statement and preliminaries

The MIMO linear MJS under investigation is

X1(t) = An(e) + A1 (me)Xa (6)
+ (A12(nr) + A12(me))Xa (D),

Xo(6) = (Aa1(m0) + A21 ()X (£) (1)
+ (A2 (mr) + A2 (ne))X2(t) + B2 () U (D),
Y(t) = X1 (b),
o =So, t=>0,
where X(t) = [XI(t), XJ(©)]" is the system state, X; €

R®™_ X, € R™ U(t) € R™is the control input; Y(t) € R"™
is the system output; A;(n¢),i,j = 1,2, By(n:) are stochastic
coefficient matrices with compatible dimensions, A;(n;),i,j =

1, 2 are stochastic uncertain matrices and {n;, t € [0, T]}is afinite-
state Markovian process having a state-space S = {1,2,...,v},
det(B,(j)) # 0, j € S, generator (q;) with transition probability
from mode i at time t to mode j at timet + 6,i,j € S,

Pi(8) = P(Neys = jine = 1)

g6 +00),  ifi#],

B {1 +qud +0(8), ifi =], @

where
v
Gii = — Z Qim» Gij = 0, Vi, jeS, i#], (3)
m=1,m##i

8 > 0and lims_.¢0(58)/8 = 0.
Assumption 1. The uncertain matrices satisfy
Azl < &k, BLj=1,....,2, k=1,...,v, (4)

where §;;(k) are known constants.

Definition 1 (Zhu et al., 2014). The system (1) is called mean-
square stable, if for each & > 0, there exists § > 0, such that

sup EIX(O] <,

tp<t<oo

for all [ X (to)|| < 8. (5)

In addition, the system (1) is called asymptotically mean-square
stable, if it is mean-square stable and

lim EIX(©I” =0, forall [X(to)] < 6. (6)
—00

Furthermore, if Eq. (6) holds for arbitrary positive constant &,
then the system (1) is called globally asymptotically mean-square
stable.

The sliding surfaces are defined as

SX,n) =Ci(m)X1 + X2 =0. (7)

Denotes .# as the weak infinitesimal operator of the process
{X1(¢t), n¢, t > 0} at the point {t, X1, j}. Substituting (7) and n; = j
into system (1) yields

Xy = A (DX1 + A ()S.

ZS = A (DX1 + An (DS + B, (HU(D), (8)
o =So, t=>0,
wheren; =j,j=1,...,v,and

An() = AnQ) + A1 () — A() + 420G ().
A() = An() + An),
A21() = CL() (A1) + A1)
—C(NARG) + A2)Ci() + (A21() + 421(G))  (9)

— (A () + A2 ()CG) + Y oiCi (i),
i=1

An() = (ARG + A12()) + (A2 () + A20)).

An important step for analyzing the probability problems of
M]Ss under SMC is to derive multi-step state transition probability.
Some events are defined as follows.

B : The initial condition is g = sp. (10)
At ne=j,0 <t <t. (11)
A°(t) : The stochastic process parameter does not jump,

N =5, 07 =t (12)

Aj’.‘(t) : The stochastic process parameter jumps k times
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