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The new Mersenne number transform (NMNT) has proved to be an important number theoretic transform
(NTT) used for error-free calculation of convolutions and correlations. Its main feature is that for a
suitable Mersenne prime number (p), the allowed power-of-two transform lengths can be very large.
In this paper, efficient radix-22 decimation-in-time and in-frequency algorithms for fast calculation of
the NMNT are developed by deriving the appropriate mathematical relations in finite field and applying
principles of the twiddle factor unscrambling technique. The proposed algorithms achieve both the
regularity of radix-2 algorithm and the efficiency of radix-4 algorithm and can be applied to any powers
of two transform lengths with simple bit reversing for ordering the output sequence. Consequently,
the proposed algorithms possess the desirable properties such as simplicity and in-place computation.
The validity of the proposed algorithms has been verified through examples involving large integer
multiplication and digital filtering applications, using both the NMNT and the developed algorithms.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Convolutions and correlations are the most fundamental math-
ematical tools used for enormous area of digital signal/image pro-
cessing and other diverse applications [1,2]. For instance, convo-
lutions are widely used in the design and implementation of the
finite impulse response (FIR) as well as the infinite impulse re-
sponse (IIR) digital filters. Moreover, it is well known that the DFT
of prime lengths can be computed by converting it to a cyclic
convolution using ‘Rader’s convolution algorithm’ [3]. Correlation
differs from convolution only by a simple inversion of one of the
input sequences [4], therefore developments for the convolutions
algorithms are equally applicable to the correlation also.

By proper scaling of the convolution’s inputs, they can be al-
ways converted to a set of integers, and the convolution can be
performed modulo a prime number M in the finite (Galois) field
GF(M). If the scaling factor is such that the convolution output has
never exceeded M/2, then the convolution output has the identi-
cal values modulo M that would be obtained in the normal field.
Under these conditions, the calculation of the convolution can be
simplified by introducing a new family of transforms defined in
finite field, known as number theoretic transforms (NTTs) [5,6],
that have the same structure as the DFT but with complex op-
erations replaced by an exact integer operations performed mod-
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ulo M . NTTs first presented by Pollard [7], are discrete transforms
defined over residue class fields or rings of integers, which were
introduced for efficient calculation of error-free convolution and
correlation without truncation or round-off errors.

NTTs have been firmly recognised within the field of signal pro-
cessing [2]. Interesting applications of NTTs are found in the areas
of digital filtering, image processing [8,9], fast coding and decoding
[10], large integer and matrix multiplication [11,12], cryptography
[13], and deconvolution [14]. This is owing to their contributing
ability to perform error-free calculations over a field or a ring of
integers whilst maintaining the cyclic convolution property (CCP).
This is in contrast to other methods of calculation, such as the DFT
which involves complex arithmetic with rounding and/or trunca-
tion errors in its calculations; errors also arise in the multiplication
with cosine and sine functions which are irrational, preventing ex-
act representation in a finite precision machine [15].

The most recognised NTTs are the Fermat (FNT) [16] and
Mersenne (MNT) [6] number transforms. However, for standard
signal processing applications the main drawback of these trans-
forms is the stringent relationship between word length (the num-
ber of bits in the modulus), obtainable transform length, and
a limited choice of possible word lengths. To retain the advan-
tages of NTTs, the New Mersenne Number Transform (NMNT) was
introduced [17,18], which alleviate this relationship. The NMNT
is defined modulo the Mersenne numbers, where arithmetic op-
erations are simple equivalent to 1’s complement and has the
cyclic convolution property; hence, it can be used for fast calcu-
lation of error-free convolutions and correlations. The NMNT is a
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particularly interesting NTT as it has a long powers of two lengths
up to 2p , making it amenable to fast algorithms.

Various Cooley–Tukey algorithms for the fast calculations of the
NMNT have been developed based on both DIT and DIF approaches
such as radix-2 [17,18], radix-4 [19,20] and split-radix [21,22] al-
gorithms. However, for any transform to stand as a good candidate
for real applications, its complete fast algorithms need to be devel-
oped.

Over the last years, a new hardware-oriented FFT algorithm
known as radix-22 [23–25], as well as its variants algorithms
[26–29], has been recognised as one of the most powerful struc-
tures used in pipeline architectures. It achieves at the same time
both a simple and regular butterfly structure as radix-2 algorithm
and a reduced number of twiddle factor multiplication provided by
radix-4 algorithm. Therefore, it is desirable to generalise this algo-
rithm to other discrete transforms such as the NMNT.

Therefore, the aim of this paper is to introduce new radix-22

decimation-in-time (DIT) and in-frequency (DIF) NMNT algorithms.
The derivation of the proposed algorithms is based on the princi-
ple of the twiddle factor unscrambling technique [30–32], which is
different from the conventional multidimensional index mapping
technique [18]. The development of the presented algorithms has
rested mainly on the observation that a radix-4 algorithm can be
modified so that the output is in bit-reversed order; if a normal
radix-4 butterfly is used, the output is in base-4 reversed order.
However, if the outputs of the four short length butterflies are
modified to have their outputs in bit-reversed order, the output
of the total radix-4 algorithm will be in bit-reversed order and not
base-4 reversed order.

The remaining contents of this paper are organised as follows:
Section 2 reviews the NMNT and its cyclic convolution property. In
Sections 3 and 4, we propose radix-22 DIT- and DIF-NMNT algo-
rithms, respectively. In Section 5, we study the performance of the
proposed algorithms by analysing their arithmetic complexity and
comparing them with existing NMNT algorithms. Section 6 intro-
duces two examples for the presented algorithms. A conclusion is
then given in Section 7.

2. The new Mersenne number transform

2.1. Transform definition

Let p be a prime and Mp = 2p − 1 Mersenne numbers, which
are primes for p = 2,3,5,7,13,17,19, . . . , etc. The NMNT of an
integer sequence x(n) of length N is given by [17,18]:

X(k) =
〈

N−1∑
n=0

x(n)β(nk)

〉
Mp

, k = 0,1, . . . , N − 1 (1)

and its inverse has exactly the same form:

x(n) =
〈

N−1
N−1∑
k=0

X(k)β(nk)

〉
Mp

, n = 0,1, . . . , N − 1 (2)

where:

β(nk) = β1(nk) + β2(nk) (3)

β1(nk) = 〈
Re(α1 + jα2)

nk〉
Mp (4)

β2(nk) = 〈
Im(α1 + jα2)

nk〉
Mp (5)

Also:

α1 = ±〈
2q〉

Mp; α2 = ±〈−3q〉
Mp; q = 2p−2 (6)

〈 〉Mp represents modulo Mp.

Fig. 1. Fast convolution using the NMNT.

α1 and α2 are of order N = 2p+1. For transform length N/d
where d is an integer power of two, β1 and β2 are given by:

β1(nk) = 〈
Re

(
(α1 + jα2)

d)nk〉
Mp (7)

β2(nk) = 〈
Im

(
(α1 + jα2)

d)nk〉
Mp (8)

Re(.) and Im(.) denote real and imaginary parts of the enclosed
term respectively, (N−1) exists and is given by (2p−d), where N =
2d and d is an integer, 0 � d � p.

2.2. NMNT cyclic convolution property

The NMNT has the cyclic convolution property; if x(n) and h(n)

are two sequences to be convolved and [y(n) = x(n) � h(n)] is the
convolution result, then

Y (k) = X(k)Γ H(k) = X(k) • Hev(k) + X(N − k) • Hod(k) (9)

where � is the cyclic convolution operator and • is point-by-point
multiplication. X(k), H(k) and Y (k) stand for the NMNT transforms
of x(n), h(n) and y(n) respectively. Hev(k) and Hod(k) stand for
even and odd parts of H(k) respectively, which are given by:

Hev(k) = 〈(
H(k) + H(N − k)

) × 2p−1〉
Mp (10)

Hod(k) = 〈(
H(k) − H(N − k)

) × 2p−1〉
Mp (11)

If both x(n) and h(n) are properly padded with zeros, their cir-
cular convolution given in (9) will be equivalent to their linear
convolution. To avoid overflow, the modulus, Mp must be chosen
so that y(n) does not exceed Mp, one upper bound is given by [5,
18]:

∣∣y(n)
∣∣ �

∣∣x(n)
∣∣
max

N−1∑
n=0

∣∣h(n)
∣∣ � Mp/2 (12)

The process of calculation of the convolution via the NMNT is
shown in Fig. 1, where the operator Γ is given in (9).

3. Decimation-in-time algorithm

The development of radix-22 algorithms starts by decomposing
(1) into four partial sums and replacing (n) with (4n + l) for n =
0,1, . . . , N/4 − 1 and l = 0,1,2,3 as follows:

X(k) =
〈

3∑
l=0

N
4 −1∑
n=0

x(4n + l)β
(
(4n + l)k

)〉
Mp

(13)

According to (13), the input sequence x(n) is decimated into
four sets so that each partial sum represents NMNT of size N/4.
The output sequence X(k) is computed as four separate parts, and
each part denoted by X(k +λN/4) has (N/4) consecutive elements
indexed by k for k = 0,1, . . . , N/4 − 1 and λ = 0,1,2,3. Therefore,
(13) becomes:
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