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a b s t r a c t

This note presents a refinement of Matrosov’s theorem for a class of differential inclusions whose set-
valued map is defined as a closed convex hull of finitely many vector fields. This class of systems may
arise in the analysis of switched nonlinear systems when stability with arbitrary switching between the
given vector fields is considered. Assuming uniform global stability of a compact set, it is shown that
uniform global attractivity of the set can be verified by tailoring Matrosov functions to individual vector
fields. This refinement of Matrosov’s theorem is an extension of the existing Matrosov results which may
be easier to apply to certain differential inclusions than existing results, as demonstrated by an example.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Matrosov’s theorem allows one to check uniform asymptotic
stability of time-varying systems in situations when uniform
stability has already been established (Matrosov, 1963). In its
original form (Matrosov, 1963), Matrosov’s theorem establishes
convergence via a positive definite Lyapunov function whose
derivative is negative semi-definite and an auxiliary not necessar-
ily sign-definite (Matrosov) function whose derivative is strictly
negative on the neighbourhood of the set where the derivative of
the Lyapunov function is equal to zero. A simpler version of Ma-
trosov’s theorem was presented in Paden and Panja (1988). In-
spired by Paden and Panja (1988), a generalisation of this theorem
with multiple auxiliary Matrosov functions was first proposed in
Loria, Panteley, Popović, and Teel (2005). A Matrosov result for dif-
ferential inclusions can be found in Teel, Loria, and Panteley (2002)
but this result uses only two Matrosov functions. Results in San-
felice and Teel (2009) apply to a class of differential inclusions
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but those results do not have the added flexibility of the current
work, as it will be demonstrated via an example. As pointed out
in Sanfelice and Teel (2009), Matrosov’s theorem provides alterna-
tive conditions to invariance principles for asymptotic stability of
time-invariant systems (Krasovskii, 1963; LaSalle, 1967).

Matrosov’s theorem was extended to discrete-time systems
(Teel, Nešić, Loria, & Panteley, 2010), parameterised discrete-time
systems (Nešić & Teel, 2004), hybrid systems (Sanfelice & Teel,
2009) and stochastic systems in Teel (2013a,b). Various Lyapunov
function constructions via Matrosov functions were presented in
Malisoff andMazenc (2007), Mazenc, Malisoff, and Bernard (2009)
and Mazenc and Nešić (2007) for continuous-time systems.

The main purpose of this paper is to present a refinement
for Matrosov’s theorem for a class of differential inclusions that
may arise in the stability analysis of switched nonlinear systems.
The set-valued map defining the considered class of inclusions is
generated as a closed convex hull of a finite set of time-varying
vector fields.We assume that a compact setA is uniformly globally
stable for the inclusion and we prove uniform global attractivity of
the set via the Matrosov functions. It turns out that constructing
Matrosov functions directly for the inclusion is in general difficult.
We show that ifwe construct functions that areMatrosov functions
for each of the constituting vector fields, then this implies uniform
global attractivity of the set A; this can be much simpler than
finding Matrosov functions directly for the inclusion as illustrated
by an example. We illustrate our result by an example with two
vector fields.

The paper is organised as follows. We first present Matrosov’s
Theorem for general differential inclusions that generalises results
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in Loria et al. (2005) and it is essentially contained in Sanfelice and
Teel (2009, Theorem 4.1). Compared to the results in Teel et al.
(2002) it allows formore than two functions and it uses a simplified
condition fromPaden and Panja (1988). A refinement ofMatrosov’s
Theorem for a class of differential inclusions is given in Section 3;
this is the main result of our paper. We illustrate our results by
applying our main result to an example taken from Lee, Tan, and
Nešić (2015). Summary is given in the last section.

2. Matrosov theorem for differential inclusions

In this section, we consider differential inclusions of the form:

ẋ ∈ F(t, x), (1)

where F : R≥0 × Rn ⇒ Rn. A solution of a differential inclusion,
defined by a set-valued mapping F (see Eq. (1)), is a locally abso-
lutely continuous Rn-valued function defined on some interval of
the form [a, b), with 0 ≤ a < b (where b could be the infinity), such
that the derivative of x at the time instant t is in the set F(t, x(t))
for almost all t in [a, b). The interval [a, b) is defined asDom(x) and
a is denoted as t0(x). The solution x is said to be complete if b = ∞,
and it is said to be maximal if there is no other solution y such that
Dom(x) is contained in Dom(y) and x(t) = y(t), ∀t ∈ Dom(x).

For a set-valued function F : R≥0 × Rn
→ Rn, let D(F) :=

{x ∈ Rn |F(t, x) ≠ ∅, ∀t ≥ 0 }. The following assumption can be
used to guarantee the existence of solutions of the system (1) from
points x ∈ D(F) (see Filippov, 1988 for the existence of solutions
and more detailed discussion in Goebel, Sanfelice, & Teel, 2009).

Assumption 1. A set-valued function F : R≥0 × Rn
→ Rn satisfy

the following conditions:

(a) D(F) is a nonempty open subset of Rn.
(b) F is outer semi-continuous1 on R≥0 × D(F).
(c) For each x ∈ D(F) and each t ≥ 0, F(t, x) is compact and

convex.
(d) F is locally bounded on R≥0 × D(F).2

We show that an extension of Matrosov’s theorem for
differential equation presented in Loria et al. (2005) is easy to state
for differential inclusions of the form (1), see Theorem 1. The set of
solutions for this inclusion starting from an initial time t0 with an
initial condition x0 = x(t0) is denoted as S(t0, x0). Let |ξ | denote
the Euclidean norm of a vector ξ ∈ Rn. Given a set A ⊂ Rn, we use
|ξ |A := infz∈A |ξ − z| to denote the distance of ξ ∈ Rn from A.

Definition 1. We use the following stability notions for the
differential inclusion (1):

• A compact set A is said to be uniformly stable (US) if for any
ϵ > 0 there exists δ = δ(ϵ) such that we have that |x0|A ≤ δ
implies that |x(t)|A ≤ ϵ for all (t0, x0) ∈ R≥0×Rn, x ∈ S(t0, x0)
and t ∈ Dom(x).

• A is said to be uniformly globally stable (UGS) if it is US and
the solutions are uniformly globally boundedwith respect toA;
that is, for any ∆ > 0 there exists M > 0 such that |x0|A ≤ ∆

implies that |x(t)|A ≤ M for all (t0, x0) ∈ R≥0×Rn, x ∈ S(t0, x0)
and t ∈ Dom(x).

1 For a set-valued function F : R≥0 × Rn
→ Rn , it is said to be outer

semicontinuous on R≥0 × D(F) if for any (t, x) ∈ R≥0 × D(F) and any sequence
{(tn, xn)}n∈N ⊂ R≥0 ×D(F) with (tn, xn) → (t, x) as n → ∞, and yn ∈ F(tn, xn) →

y as n → ∞, then y ∈ F(t, x).
2 For a set-valued function F : R≥0 ×Rn

→ Rn , it is said to be locally bounded on
R≥0 × D(F) if for any (t, x) ∈ R≥0 × D(F), there exist a δ(t, x) > 0 and a compact
set K(t, x) ⊂ Rn such that F(s, y) ⊂ K , ∀|s − t| < δ, |y − x| < δ.

• The setA is uniformly globally attractive (UGA) if for any strictly
positive ∆, ϵ, there exists T = T (∆, ϵ) such that |x0|A ≤ ∆

implies that |x(t)|A ≤ ϵ for all (t0, x0) ∈ R≥0×Rn, x ∈ S(t0, x0)
and t ∈ Dom(x) with t ≥ t0 + T .

• The set A is uniformly globally asymptotically stable if it is UGS
and UGA. �

Remark 1. It is worthwhile to highlight that in the definitions of
stability properties, it is not assumed that solutions are complete,
see a similar discussion in Sanfelice and Teel (2009).

To state Theorem 1, we need to introduce some notation. Let F :

R≥0 × Rn ⇒ Rn, the strictly positive real numbers (δ, ∆) and
the compact set A ⊂ Rn be given. Define D = D(δ, ∆) :=

{ξ ∈ Rn
: |ξ |A ∈ [δ, ∆]}. Let γ > 0 and Bn

:= {ξ ∈ Rn
: |ξ | ≤ 1};

then γ Bn
= {ξ ∈ Rn

: |ξ | ≤ γ }.
Next, theMatrosov property andMatrosov function are defined.

Definition 2 (Matrosov Property). A finite set of continuous
functions


Yj
r
j=1, Yj : γ Bm

× D → R for each j ∈ {1, . . . , r},
is said to have the Matrosov property relative to (γ ,D) if, with the
additional definitions Y0 ≡ 0 and Yr+1 ≡ 1, we have the following
property:

For each j ∈ {0, . . . , r}, if (z, x) ∈ γ Bm
×D and Y0(z, x) = · · · =

Yj(z, x) = 0 then Yj+1(z, x) ≤ 0.

Remark 2. Due to Y0 ≡ 0, this property with j = 0 implies that
Y1(z, x) ≤ 0 for all (z, x) ∈ γ Bm

×D; due to Yr+1 ≡ 1, the property
with j = r implies that there are no points (z, x) ∈ γ Bm

× D for
which Y1(z, x) = · · · = Yr(z, x) = 0.

Definition 3. A finite set of continuously differentiable functions
Wj
r
j=1, where Wj : R≥0 × Rn

→ R for each j ∈ {1, . . . , r}, are
said to be Matrosov functions for (F ,D) if there exists a function
φ : R≥0 × Rn

→ Rm, a positive real number γ , and continuous
functions Yj : γ Rm

×D → R, j ∈ {1, . . . , r} that have theMatrosov
property relative to (γ ,D) and, for each j ∈ {1, . . . , r},

max

|Wj(t, x)|, |φ(t, x)|


≤ γ

∀(t, x) ∈ R≥0 × D (2a)
∇tWj(t, x) + ⟨∇xWj(t, x), ξ⟩ ≤ Yj(φ(t, x), x)

∀(t, x) ∈ R≥0 × D, ξ ∈ F(t, x). (2b)

Now we can state the main result of this section. This result is
a direct generalisation of Theorem 1 in Loria et al. (2005) and it is
essentially contained in Sanfelice and Teel (2009, Theorem4.1) and
so its proof is omitted.

Theorem 1. For the differential inclusion (1), if the compact set A is
UGS and, for each pair of strictly positive real numbers (δ, ∆), there
exist Matrosov functions for (F ,D), then A is UGAS. �

3. A refinement of Matrosov’s theorem for differential inclu-
sions

In this section, we consider differential inclusions (1) where the
set-valued mapping F can be written as

F(t, x) = co

 mf
i=1

fi(t, x)


, ∀(t, x) ∈ R≥0 × Rn (3)

for a given positive integer m and functions fi : R≥0 × Rn
→ Rn,

i ∈

1, . . . ,mf


.
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