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This paper deals with the application of Chebychev’s approximation theory to IIR digital filter frequency
response (FR) approximation. It explores the properties of the frequency response of IIR digital filters as a
nonlinear complex approximating function; IIR digital filter frequency response is used to approximate a
prescribed magnitude and phase responses. The approximation problem is closely related to optimization.
If the set of approximating functions is non-convex, the optimization problem is difficult and may
converge to a local minimum. The main results presented in the paper are proposing a convex
stability domain by introducing a condition termed “sign condition” and characterization of the best
approximation by the Global Kolmogorov’s Criterion (GKC). The Global Kolmogorov’s Criteria is shown
to be also a necessary condition for the approximation problem. Finally, it is proved that the best
approximation is a global minimum. The sign condition can be incorporated as a constraint in an
optimization algorithm.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The transfer function of an IIR digital filter is

H(z) = N(z−1)

D(z−1)
=

∑m
k=0 bkz−k

1 + ∑n
l=1 alz−l

,

z ∈ U, U is the unit disc. (1)

Its frequency response is H(ω) = H(z)|z=e jω . This function is used
to approximate a prescribed frequency response on a compact in-
terval, Ω .

In many applications of digital signal processing filter design
with arbitrary magnitude and phase responses is required.

One design trend of IIR digital filters is to meet frequency
response magnitude specifications that minimize a specific error
norm (L∞ norm). The designed filter may have a nonlinear phase.
An all-pass filter is cascaded with the filter as an equalizer [1,2].
The equalizer is a real nonlinear phase function of the all-pass
filter [3]. The minimum error is often characterized by the alter-
nation theorem (equiripple of the error on a frequency interval).

One of the drawbacks associated with the use of equalizer is
that the number of independent coefficients in an all-pass sec-
tion is less than the number of the filter coefficients. Moreover,
based on approximation theory, the original coefficients of the IIR
digital filter, a and b, are no longer the independent coefficients
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for the magnitude approximation problem. The valid independent
approximation parameters are, in this case, the coefficients of the
magnitude which are functions of a and b that are probably not
easily solved.

Another trend is to approximate both magnitude and phase
simultaneously using the complex FR functions. The major chal-
lenges in any approximation problem are: existence, uniqueness,
characterization of best approximation and designing an algorithm.
The Chebychev approximation with general continuous complex
valued rational functions is tackled in [34–36]. As it was estab-
lished by Walsh [34], the existence of best approximation is guar-
anteed provided the domain of approximation is compact and has
no singularity points. In addition, the best approximation is known
to be non-unique [36].

In the real approximation the alternation theorem is the tool
for characterizing the best approximation. This theorem no longer
holds in the complex case. The main tools for characterization
of an optimal solution in the complex case are the Global Kol-
mogorov Criterion (GKC) and the Local Kolmogorov Criterion (LKC)
[30,31]. GKC is generally a sufficient condition while LKC is a nec-
essary condition. The intimate connection between approximation
and optimization is well recognized [32,33]. The optimization algo-
rithm is used to determine the coefficients of a stable IIR digital fil-
ter that minimizes the max-norm error (L∞). Various design meth-
ods are proposed to compute an optimal solution [11–22]. The
optimization problem is difficult if the set of approximating func-
tions are non-convex. In such cases, the algorithm may converge
to a local minimum. Another major problem in the design of IIR
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digital filters is stability. Some design methods start with a point
corresponding to a stable IIR digital filter, i.e., the roots of D(A, z)
lie inside the unit disc (Schur Polynomial), and monitor the stabil-
ity iteratively; other methods follow stabilization steps. Numerical
optimization algorithms incorporate the stability requirements in a
constrained optimization setting. A linear programming algorithm
was proposed for the optimization utilizing the positive realness of
D(A, z), (Re{D(A,ω)} > 0), to ensure stability [13]. The convex sta-
bility of (N(z), D(z)) and the positive realness of H(z) are utilized
to obtain a convex set of IIR digital filters [21]. Rouche’s condi-
tion on the denominator perturbation is incorporated to preserve
stability [20]. Stability margin approach was proposed in [18]. It-
erative Lyaponov inequality constraint is incorporated for the filter
stability [17].

The objective of this paper is to investigate the approximation
properties of the rational complex FR functions using non-linear
Chebychev approximation theory. The concepts of “functions with
betweeness property” [25] and theory of “regular systems” [27]
play an important role in this paper. The results of this study are
three folds: it proposes a convex stability domain of FR functions
by introducing a condition termed “sign condition”. In addition, the
proof that GKC (Theorem 2) is also a necessary condition in order
to characterize a best approximation, is provided. Finally, the best
approximation is shown to be a global minimum (Theorem 3). This
sign condition has to be incorporated as a constraint in the opti-
mization algorithm.

The interested reader about convex stability is invited to review
the references [4, Chapter 7] [5–8] (see also Appendix A).

This paper is organized as follows: some definitions are pro-
vided in Section 2. Section 3 states the complex approximation
problem of FR functions. The results of the paper are included in
Section 4. Section 5 presents examples. The conclusion is presented
in Section 6. Appendix A is about convex stability.

2. Preliminaries

2.1. IIR digital filters

The transfer function of an IIR digital filter is defined in Eq. (1)
where N(z) and D(z) are relatively prime of fixed degrees m and
n with cardinality m � n. The sets of parameters {A = (a1 . . .an),

a0 = 1} and {B = (b0 . . .bm)} are real.
The set of FR functions of stable IIR digital filters is denoted

by H.
A digital IIR digital filter is stable if the denominator D(A, z)

has all its zeros inside the unit disc., i.e. D(A, z), is a Schur
polynomial. D(A,ω) �= 0 on the boundary of the unit circle and
Re[D(A,ω)] > 0 [13].

The convex combination of two polynomials, D0(ω) and D1(ω),
is

Dλ = D0 + λ(D1 − D0),

where λ belongs to [0,1].
The real and imaginary parts of D(A,ω) are respectively,

g(A,ω) = 1 +
n∑

l=1

al cos(lω), (2)

u(A,ω) =
n∑

l=1

al sin(lω). (3)

3. Statement of the Chebychev approximation problem

The following brief review considers the general problem of ap-
proximation of a continuous function, f (ω), by an approximating

function depending on a finite number of parameters. Thus, the
problem under consideration is to approximate, f (ω), by an ap-
proximating function, F (A,ω), which may depend on the parame-
ter, A, in a linear or non linear way. The problem is to determine
those parameters, A∗ , which make, F (A∗,ω), closest to f (ω) with
respect to some norm, i.e., ‖ f (ω) − F (A∗,ω)| is a minimum. The
functions, f (ω), and, F (A,ω), can be real or complex functions.
The function, F (A∗,ω), may be termed best approximation, opti-
mal approximation and minimal solution. Once the problem is for-
mulated in a mathematical form, there are four main issues related
to its solution after the choice of F (A,ω): existence, uniqueness,
characterization and computation of F (A∗,ω). A norm is defined

by ‖ f ‖p = (
∫ |( f (ω)|p dω))

1
p and denoted Lp norm. The norms L1,

L2, and L∞ are often used in the approximation theory.

3.1. Mathematical formulation of the approximation problem

Let C(Ω) be the space of continuous complex valued function
on a real compact interval, Ω , endowed with the max-norm, L∞∥∥H(A, B, .)

∥∥ = max
ω

∣∣H(A, B,ω)
∣∣. (4)

Let Hd(ω) ∈ C(Ω) \ H be a prescribed frequency response and
H(A, B,ω) ∈ H be the approximating function. For example,
Hd(ω) may be Γ e− jφ(ω) ∈ C(Ω)\H, where Γ is a constant and
φ(ω) is a linear function of ω. The error function of approxima-
tion is defined as:

e = Hd(ω) − H(A, B,ω). (5)

This function attains its norm on a discrete point set M∗ ⊂ Ω with
cardinality � m+n+2 points. The minimum solution of the Cheby-
chev approximation problem H0(a∗,b∗,ω) is the solution of:

E∗ = ∥∥Hd(.) − H0
(

A∗, B∗, .
)∥∥

= min
(A,B)

max
ω

∣∣Hd(ω) − H(A, B,ω)
∣∣, (6)

where E∗ is the max-norm of e. This solution is characterized by
the GKC and the LKC [30].

4. Results

The keys of this study are the concept of “betweeness proper-
ty” [24,25] and the more general concept “regular systems” [27,28].
These two concepts were introduced in the context of nonlinear
approximation theory as a generalization of convexity. A variant
concept termed “weak betweeness property” has been applied for
characterization and uniqueness of best approximation [29]. The
three concepts have considered complex rational functions pro-
vided that the denominator is a real positive function.

The convex stability and the line homotopy [37] are additional
concepts playing an important role in the study.

In the approximation problem at hand, the concepts of betwee-
ness property and regular systems have been applied to the com-
plex FR functions provided the denominator, D(A,ω), is a complex
function and non-zero on the unit circle.

4.1. The main result of the paper is Theorem 1

Its consequences are proposing a convex stability domain in FR
functions by introducing a condition, i.e., “sign condition”. Recall-
ing, from introduction that GKC is generally a sufficient condition
in order to characterize the best approximation; the investigation
of this work shows that GKC is also a necessary condition (Theo-
rem 2) under the existence of the monotone sequence denoted hλ
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